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ABSTRACT 
Identification of Transcription Factor Binding Sites (TFBS) also 

called as motifs, from the promoter region of genes remains a 

highly important and unsolved problem of computational 

biology. Motifs are short, recurring patterns in DNA sequences 

that are presumed to have a biological function. In this paper, 

we propose an evolutionary approach to identify transcription 

factor binding sites. This approach is based on the genetic 

algorithm with population clustering. A simple genetic 

algorithm favors selection of fittest, and this selective pressure 

tends to remove the diversity of population. Sometimes 

promoter sequences of some genes consists multiple motifs that 

also need to be identified. The proposed algorithm uses 

clustering scheme to partition population in clusters and the 

mating is allowed only within cluster. This scheme enables 

algorithm to retain diversity of population over the generations, 

against the selection pressure and to find out multiple motifs in 

promoter sequences of co-regulated genes. We applied this 

approach on various data sets and the results show that it can 

find correct results for binding sites. 

General Terms: Genetic algorithm, DNA sequences, 

motif  

Keywords: motif, transcription factor, regulatory binding 

sites, genetic algorithms and clustering 

 

1. INTRODUCTION 
Over the years, to understand the biological activities in various 

organisms many genome-sequencing projects are completed by 

biologists. These genome sequencing projects provided the full 

map of gene locations on chromosomes but tell us very little 

about how, when and why particular genes are expressed, and 

which interactions of genes are correlated with human disease. 

To know about this we need to understand the gene expression 

mechanism. Understanding the process that regulates gene 

expression and identification of those regulating element is a 

major challenge of biology. The main idea in gene expression is 

that every gene contains the information to produce a protein. 

Gene expression begins with binding of multiple protein 

factors, known as transcription factors (TF), to enhancer and 

promoter sequences. Transcription factors regulate the gene 

expression by activating or inhibiting the transcription 

machinery. These transcription factors binding sites are called 

motifs. A motif is very small in length, generally of 4-8 base 

pair but it may be longer than this. Also there may be multiple 

motifs present in a promoter sequence. Co – expressed genes 

are expressed as a group due to the interaction of a TF protein 

or set of proteins. Thus identification of regulatory regions and 

binding sites is a prerequisite for understanding gene regulation 

[1] [2]. Experimental identification and verification of such 

elements is challenging and costly, so much effort has been put 

into the development of computational approaches. 

Computational discovery of regulatory elements is mainly 

possible because they occur several times in the same genome, 

and because they may be evolutionary conserved. This means 

that searching for over represented motifs across regulatory 

regions may discover novel regulatory elements. From the 

computation point of view the motif finding problem can be 

formulated as follows: given a set of sequences, find an 

unknown pattern that occurs frequently. If a pattern of m letters 

long appears exactly in every sequence, a simple enumeration 

of all m-letter patterns that appear in the sequences gives the 

solution. But this simple looking problem is complicated 

because of evolutionary events like mutations, insertions and 

deletions. 

Motifs or TFBSs are generally represented as consensus IUPAC 

strings, position frequency matrices (PFMs), position weight 

matrices (PWMs), or position specific scoring matrices 

(PSSMs) in databases. Commonly, motifs or TFBSs in non-

coding DNA sequences are conserved but still tend to be 

degenerate, which can influence the interaction between TFs 

and motifs or TFBSs. Therefore, after motif or TFBS data are 

collected and aligned from experimental or computational 

results, relevant consensus IUPAC strings can be constructed by 

selecting a degeneracy base pair symbol for each position in the 

alignment. The motif or TFBS data can also be modeled as 

PFM by aligning identified sites and counting the frequency of 

each base pair at each position of the alignment. Moreover, by 

using sequence logos, PWM can be displayed with color and 

height proportional to the base pair frequency and information 

content for each position by formulas. Known regulatory motif 

profiles are cataloged in databases such as TRANSFAC [3] and 

JASPAR [4]. 

We used a population clustering genetic algorithm for 

regulatory motif discovery. The algorithm uses clustering 

scheme to partition search space thus enabling algorithm to 

retain diversity of population against the selection pressure and 

to identify multiple significant motifs. In section 2 we described 

the computational aspect of problem. Section 3 contains a brief 

survey of various techniques and algorithms used to solve the 

motif-finding problem. Section 4 explains the method and it’s 

components like representation, fitness score function, 

selection, crossover, mutation operators and clustering scheme. 

Next section contains the simulation results followed by 

conclusion. 
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2. PROBLEM STATEMENT 

The TFBS identification in unaligned DNA sequences using 

GAs can be defined as follows [5]: 

Given a set of N sequences S ={S1, S2, . . ., SN}, each of which 

is from the finite alphabet D ={A, T, C, G}, where the length of 

each sequence is l, and the motif width w with a valid constraint   

0 < w << l. Find a set of instances M = {m1, m2, . . ., mN} where 

each mi is a subsequence with length w from sequence Si, such 

that the sum of information content IC, as proposed by Stormo, 

is maximized [6] 
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here fb( j) is the normalized frequency of nucleotide b Є D on 

the column j of all instances in M and pb is the background 

frequency of the same nucleotide from S. 

3. EXISTING METHODS 

Identification of regulatory motifs in upstream region of co-

regulated genes or orthologous genes is an unsolved problem of 

computational biology. In last few years many algorithms were 

proposed to find solutions for motif discovery. According to 

survey [7] two major strategies exist to discover repeating 

sequence patterns occurring in both DNA and protein 

sequences: enumeration and probabilistic sequence modeling. 

Enumeration strategies rely on word counting to find words that 

are over-represented. Probabilistic model-based methods 

represent the pattern as a matrix, called a motif, consisting of 

nucleotide base multinomial probabilities for each position in 

the pattern and different probabilities for background positions 

outside the pattern. Among those previous works, most popular 

one is the Multiple Em for Motif Elicitation (MEME) system 

[8], Gibbs sampler [9] and CONSENSUS [10]. Even with weak 

signals, methods such as MEME and Gibbs Motif Sampler 

effectively find motifs of variable width and occurrences in 

DNA and protein sequences. 

Many other algorithms have been developed to improve these 

popular motif discovery tools by means of performance, length 

of motifs or some other considerations. Liu et.al employed 

genetic algorithm for finding potential motifs in the regions of 

transcription start site (TSS) [11]. Structured genetic algorithm 

is used to search and to discover highly conserved motifs 

amongst upstream sequences of co-regulated genes [12].  

Structured genetic algorithm is also used to identify variable 

length motifs [13]. 

Recently Algorithms based on promoter sequences of co-

regulated genes and phylogenetic footprinting have been 

suggested. These algorithms integrate two important aspects of 

a motif's significance, i.e., overrepresentation and cross-species 

conservation, into one probabilistic score. Based on the 

consensus algorithm Wang and Stormo developed the motif 

finding algorithm PhyloCon (Phylogenetic Consensus) [14] that 

takes into account both conservation among orthologous genes 

and coregulation of genes within a species. Sinha et al. 

developed the algorithm PhyME [15] based on a probabilistic 

approach that handles data from promoters of coregulated genes 

and orthologous sequences. 

4. PROPOSED METHOD 

A GA is a population-based method where each individual of 

the population represents a candidate solution for the target 

problem. This population of solutions is evolved throughout 

several generations, starting from a randomly generated one, in 

general. During each generation of the evolutionary process, 

each individual of the population is evaluated by a fitness 

function, which measures how good is the solution represented 

by the individual, for the target problem. From a given 

generation to another, some parent individuals, usually those 

having the highest fitness produce “offspring”, i.e., new 

individuals that inherit some features from their parents, 

whereas others (with low fitness) are discarded, following 

Darwin’s principle of natural selection. The selection of the 

parents is based on a probabilistic process, biased by their 

fitness value. Following this procedure, it is expected that, on 

average, the fitness of the population will not decrease every 

consecutive generation. The generation of new offspring, from 

the selected parents of the current generation, is accomplished 

by means of genetic operators. This process is iteratively 

repeated until a satisfactory solution is found or some stop 

criterion is reached, such as the maximum number of 

generations. 

4.1 Clustering 

The selection procedure in a simple genetic algorithm favors the 

fittest one. After few generations this selective pressure tends to 

kill the diversity of population. Due to this the simple GA 

converges early. To maintain the diversity in GA many schemes 

are used like crowding factor and fitness sharing. In crowding 

factor scheme an overlapping population is used where 

individuals replace existing strings according to their similarity. 

In fitness sharing scheme, a sharing function is defined to 

determine the neighborhood and degree of sharing for each 

string in population. Individuals who are close or similar to 

each other share their fitness and individuals who are dissimilar 

share less. Another issue with simple GA is that generally it 

converges in a single optimal result. Its inability to provide 

multiple or other sub optimal results, refrain from identifying 

the multiple or other weak motifs present in the sequence. 

To maintain the diversity of population, in addition to genetic 

algorithm we used clustering scheme. Here we partition the 

population in multiple clusters and allow only intra-cluster 

selection and mating. Hence the selective pressure is confined 

within a cluster and multiple clusters maintain the diversity 

among population. This scheme help our algorithm to preserve 

the diversity of population over the generations against the 

selective pressure and the second advantage of this scheme is its 

ability to find multiple significant motifs from the given 

sequence data set, if any present. Our clustering scheme is 

based on the dissimilarity between the fittest and the rest of the 

population. To measure the dissimilarity between the fittest and 

an individual, first we sort the population in descending order to 

get the fittest member. Then we computed Hamming distance 

between the fittest candidate motif and other individuals to 

measure dissimilarity. We clustered the members on the basis 

of distance from the fittest. All individuals at distance d go in 

same cluster. 

  

4.2 Representation  

To represent an individual we used the position based 

representation approach as used in [5], [16], each individual is 

represented by a vector P = { p1, p2, . . ., pN} storing the set of 

possible starting positions for the TFBS instances in each 

sequence. Here P represents a possible consensus solution set M 

= {m1,m2, . . ., mN}, where each pi is uniquely mapped to 
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instance mi with w known. This approach is explained in figure 

1.  

p1   p2 p3 p4 … pn 

39 138 224 71 … 164 

m1 m2 m3 m4 … mn 

 

Figure 1. Representation of an individual: pi is the position of a 

candidate motif mi in ith  sequence 

4.3 Fitness score function 

The fitness function is to evaluate how good the individuals are. 

To compute the fitness of each individual in population we used 

the fitness score function that computes the similarity score of 

the consensus string produced by an individual. A pattern of 

nucleotides that is represented by maximum frequency at a 

position is called the consensus string. This similarity score is 

computed using the PWM (position weight matrix) of each 

individual. This is defined as: 

w

i

ifMScoreFit
1

max )()(_                   ...(2) 

here M is a candidate consensus motif, w is the length of motif 

and fmax (i) is the maximum frequency value in column i. This is 

explained in the figure 2 given below: 

 

4.4 Selection 
Maintaining population diversity and selective pressure is the 

key issue while using a selection method. We performed the 

intra cluster selection. We used elitism to retain the best 

members of a cluster and remaining is selected using the 

stochastic tournament selection model. Every time, randomly 

two individuals are selected and the one with higher fitness 

score is used for mating. 

4.5 Crossovers and Mutation 
To generate new offspring from their parents we used one point 

crossover method. In this method a crossover point less than the 

length of individual, is randomly generated. Then after the 

crossover point, the substrings representing the parents are 

swapped.  

 

There may be chances of being trapped in a local optima and 

getting the false motif. To avoid this we used mutation. 

Mutation also helps in maintaining population diversity and fast 

convergence of GA. To produce the mutation effect, first we 

selected a victim individual randomly and then changed its 

position value randomly. 

 

4.6 Algorithm 
//Initialization 

 n ← Number of  individuals in population 

import promoter sequences S1  - SN 

for k = 0 to w  do 

create Cluster( k ) 

end for 

//Fitness Evaluation 

for i = 1 to n do 

randomly create candidate chromosomes of N length: P1  - Pn 

extract the  consensus motifs from chromosomes : M1  - Mn 

compute Fit_Score( Mi )for each candidate motif 

end for 

// Generation cycle 

while stopping criteria is not satisfied 

sort population in descending order on Fit_Score( Mi ) 

// Make Clusters 

for i = 1 to n  do 

k == HammingDistance(M1, Mi ) 

put Pi  in Cluster( k ) 

end for 

//Selection :  elitism 

for k = 0 to w  do 

insert best individual of the Cluster( k ) in mating pool 

for j = 1 to Cluster( k ).size -1 do 

//Tournament Selection 

get two individual randomly Pa  and Pb 

if  Fit_Score( Ma ) > Fit_Score( Mb ) then 

select  Pa 

else 

select  Pb  

end if 

end for 

//One point crossover 

make random pairs of individuals 

perform one point crossover  for each pair 

produce two offspring  from each pair 

//Mutation 

randomly find the victim individual 

randomly modify the victim  position value 

end for 

// Insertion & Evaluation 

for j = 1 to n do 

replace current individuals by newly produced offsprings 

extract candidate motifs from new chromosomes : M1  - Mn 

compute Fit_Score( Mj ) for each candidate motif 

end for 

end while 

 

m1 A    G    T    G    A    C    G    T   1     2     3     4     5     6     7     8 

m2 A    G    T    G    A    C    G    A  A 0.6  0.2  0.2  0.0  0.6  0.0  0.0  0.2 

m3 T    G    A    G    T    C    G    T  T 0.2  0.0  0.6  0.0  0.2  0.2  0.0  0.4 

m4 A    G    T    G    A    C    G    G  C 0.2  0.0  0.0  0.0  0.2  0.8  0.0  0.2 

m5 C    A    G    G    C    T    G    C  G 0.0  0.8  0.2  1.0  0.0  0.0  1.0  0.2 

 Consensus String A    G    T    G    A    C    G    T 

 Fitness Score = 5.8 0.6+0.8+0.6+1.0+0.6+0.8+1.0+0.4 

Figure 2.  A consensus string representation and it’s fitness score computation 
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5. SIMULATION RESULTS 
In order to evaluate the performance of our algorithm for motif 

identification, we used the synthetic datasets comprising 

various combinations. This includes the number of sequences 8 

- 16, sequences of length 200 to 400 bp, size of motifs and 

conservation of motifs. We embedded each sequence with the 

instances of a known motif at random positions. We also 

modified the motif slightly in different sequences to produce the 

mutation effects.  

For each simulated dataset, to evaluate the performance of our 

algorithm we used the standard information retrieval 

parameters, precision and recall.  Precision P is number of 

predicted motif sites that are true sites divided by number of 

predicted motif sites and recall R is number of predicted motif 

sites that are true sites divided by number of true sites. These 

two parameters are combined to compute the standard 

parameter for comparison F-score, as follows: 

F = 2 * precision * recall / (precision + recall)            …(3) 

High values of F occur only when both precision and recall are 

high. The average of precision, recall and F score was 

calculated for the discovered motifs for each dataset. Results of 

various scenarios the number of sequences, length of sequences, 

average motif width, conservation of motifs, precision, recall 

and F-score for each simulation condition are shown below in 

table 1. The F-score for single motif identification is up to 0.90 

for long motif lengths with good conservation, however for 

long motifs with poor conservation this is about 0.79. The 

results show that with poor conservation it is difficult to 

identify the correct motifs.  

To evaluate the algorithm’s ability for identification of multiple 

motifs we embedded some datasets with multiple known motifs 

of the same length and carried a fix number of runs. We 

compared the motifs retrieved by algorithm with original 

implanted motifs. The cases where we found motif instances of 

more than 70% similarity with original implanted motifs, we 

considered this as threshold for successful identification. The 

results of number of implanted motifs and successful 

identification of number of motifs are listed in table 2. 

We also tested this algorithm with the real biological datasets. 

We used the promoter sequence data of Saccharomyces 

cerevisiae. We run this algorithm against ten target genes of 

transcription factor MIG1, seven target genes of PDR3 

transcription factor and six genes of MCB transcription factor. 

We also executed the algorithm against the target genes of 

transcription factor SCB and UASCAR. The experimentally 

reported consensus motif and motif identified by algorithms are 

shown below in table 3. 

 

Table 1: Results of various scenarios 

 

S.No. (N) (L) (W) (C) Precision Recall F- Score 

1. 08 200 S G 0.75 0.75 0.750 

2. 08 200 M G 0.75 0.88 0.810 

3. 12 300 L G 0.83 0.91 0.868 

4. 12 300 S G 0.75 0.83 0.788 

5. 16 400 M G 0.81 0.87 0.839 

6. 16 400 L G 0.87 0.94 0.904 

7. 08 200 S P 0.55 0.66 0.600 

8. 08 200 M P 0.66 0.77 0.711 

9. 12 300 L P 0.71 0.78 0.743 

10. 12 300 S P 0.66 0.73 0.693 

11. 16 400 M P 0.7 0.76 0.729 

12. 16 400 L P 0.77 0.83 0.799 

 

N : number of sequences L: length of sequence W: predicted motif width C: conservation 

S: short  M: medium L: long  G: good  P: poor 

 

 

Table 2: Results of various scenarios 

 

S.No. (N) (L) (w) (N_M_E) (N_M_I) 

1. 08 200 S 04 03 

2. 12 300 S 06 04 

3. 16 400 M 04 03 

4. 12 300 M 06 05 

5. 16 400 L 06 05 

 

N_M_E: number of motifs embedded  N_M_I: number of motifs identified 
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Table 3:  Results of biological promoter sequences 
 

S.No. TF Data set Reported Consensus Motif Discovered Motif 

1. MIG1 CCCCRNNWWWWW CCCCACAGTTTT 

2. PDR3 TCCGYGGA TCCGCGGA 

3. MCB WCGCGW ACGCGT 

4. SCB CNCGAAA CACGAAA 

5. UASCAR TTTCCATTAGG TTTCCATTAGG 

  

 

6. CONCLUSION 
Identification of transcription factor binding sites is an 

important and difficult problem. Most of the existing methods 

such as Gibbs sampling algorithm are local search methods, so 

they may suffer from the problem of local optima. Genetic 

algorithm provides a good approach to solve this problem. 

Genetic algorithm solves the optimal problem based on the 

biological characteristics. In this paper, we used the position 

based consensus representations for individuals of the 

population and clustering of population scheme. 

Simulation results of the algorithm on synthetic data including 

various scenario shows that the algorithm is able to predict the 

motifs with average F-score in the range of 0.75 – 0.90 for good 

conservation, where as for poor conservation F-score drops to 

the range of 0.60 – 0.79. The algorithm is also able to detect 

multiple motifs of same length present in the sequences. 

Our algorithm is able to find the correct motifs in the promoter 

data of Saccharomyces cerevisiae. The performance of this 

approach can probably be improved using more intelligent 

operators for selection, crossover and mutation. Currently the 

algorithm can find multiple motifs of only same length, with 

suitable encoding techniques this can be made to identify 

multiple motifs of variable lengths. On the other hand, the 

fitness evaluation can be improved if we are able to additionally 

incorporate terms that reflect the biological messages behind 

the similarities among motifs. 

 

7. REFERENCES 

[1] Lockhart D., Winzeler E., 2000. Genomics, Gene 

Expression and DNA Arrays. Nature, 405, 827-836. 

[2] Stormo G.D., 2000. DNA binding sites: representation and 

discovery. Bioinformatics, vol 16, 16-23. 

[3] V. Matys, E. Fricke, R. Geffers, E. Gssling, M. Haubrock, 

R. Hehl, K. Hornischer, D. Karas, A.E. Kel, O.V. Kel-

Margoulis, D. U. Kloos, S. Land, B. Lewicki-Potapov, H. 

Michael, R. Munch, I. Reuter, S. Robert, H. Saxel, M. 

Scheer, S. Thiele and E. Wingender, 2003. TRANSFAC: 

Transcriptional Regulation, from Patterns to Profiles. 

Nucleic Acids Research, vol. 31, no. 1, pp. 374-378. 

[4] A. Sandelin, W. Alkema, P. Engstrom, W.W. Wasserman, 

and B. Lenhard, 2004. JASPAR: An Open-Access 

Database for Eukaryotic Transcription Factor Binding 

Profiles. Nucleic Acids Research, vol. 32, pp. D91-D94. 

[5] Tak Ming Chan, Kwong Sak Leung and Kin Hong Lee, 

2008. TFBS identification based on genetic algorithm with 

combined representations and adaptive post-processing. 

Bioinformatics, Vol. 24 no. 3, pages 341–349. 

[6] Stormo G.D., 1988. Computer methods for analyzing 

sequence recognition of nucleic acids.  Annual Review 

BioChem, vol 17, 241–263. 

[7] Modan K Das and Ho-Kwok Dai, 2007. A survey of DNA 

motif finding algorithms. BMC Bioinformatics, (Suppl 7), 

S21. 

[8] Bailey T.L. and Elkan C., 1994. Fitting a mixture model by 

expectation maximization to discover motifs in 

biopolymers. Proceedings of the Second International 

Conference on Intelligent Systems for Molecular Biology, 

AAAI Press, Menlo Park, California, pp. 28-36. 

[9] Thompson W., Rouchka E.C. and Lawrence C.E., 2003. 

Gibbs Recursive Sampler: Finding transcription factor 

binding sites. Nucleic Acids Research, Vol.31, pp. 3580-

3585.  

[10] Hertz G.Z., Hartzell G.W. and Stormo G.D. 1990. 

Identification of consensus patterns in unaligned DNA 

sequences known to be functionally related. 

Bioinformatics, Vol.6, pp. 81-92. 

[11] Liu F.F.M et al. 2004. FMGA: Finding Motifs by Genetic 

Algorithm. Proceedings of the Fourth IEEE Symposium on 

Bioinformatics and Bioengineering, pp.459-466. 

[12] Stine M., Dasgupta D. and Mukatira S., 2003. Motif 

Discovery in Upstream Sequences of Coordinately 

Expressed Genes. The 2003 Congress on Evolutionary 

Computation, pp.1596-1603. 

[13] Vijayvargiya S., Shukla P., 2011. A Structured 

Evolutionary Algorithm for Identification of Transcription 

Factor Binding Sites in Unaligned DNA Sequences. 

International Journal of Advancements in Technology, Vol 

2: No 1, page no. 100 – 107.  

[14] Wang T, Stormo GD. 2003. Combining phylogenetic data 

with coregulated genes to identify regulatory motifs. 

Bioinformatics, vol 19, pp. 2369-2380. 

[15] Sinha S, Blanchette M, Tompa M., 2004. PhyME: A 

probabilistic algorithm for finding motifs in sets of 

orthologous sequences. BMC Bioinformatics, 5:170. 

[16] Wei Z. and Jensen S.T., 2006. GAME: detecting cis-

regulatory elements using a genetic algorithm. 

Bioinformatics, vol 22, pp. 1577–1584. 

 
 

 

 


