
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 1

47

Design of a Priority Based Frequency Regulated

Incremental Crawler

Niraj Singhal

School of Computer Engineering &
Information Technology,

Shobhit University,

Meerut, Uttar Pradesh, India

Ashutosh Dixit

Computer Engineering Department

YMCA Institute of Engineering,
Faridabad,

Haryana, India

Dr. A. K. Sharma

Computer Engineering Department

YMCA Institute of Engineering,
Faridabad,

Haryana, India

ABSTRACT

The World Wide Web is a huge source of hyperlinked

information contained in hypertext documents. Search

engines use web crawlers to collect these documents from

web for the purpose of storage and indexing. However,

many of these documents contain dynamic information

which gets changed on daily, weekly, monthly or yearly

basis and hence we need to refresh the search engine side

storage so that latest information is made available to the

user. An incremental crawler visits the web repeatedly after

a specific interval for updating its collection. In this paper

to regulate the revisiting frequency a novel mechanism and

a novel architecture for incremental crawler is being

proposed.

Keywords : web search engine, incremental crawler,

frequency, regulated, priority, crawl workers.

1. INTRODUCTION

Internet [6], an interconnection of millions of computers around

the world, is a global information system that is logically linked

together by a globally unique address space based on the Internet

Protocol. WWW [1,2,5,7,16,17,18] is a web of hyperlinked

repository of trillions of hypertext documents [19] lying on

different websites, distributed over far and distant geographical

locations. In fact, the size of web is so enormous that it is

frustrating and tedious task to search the right information at the

right time.

Web search engines [2,4] employ crawlers to continuously collect

web pages from the web. The downloaded pages are indexed and

stored in a database as shown in Figure 1. This continuous

updation of database renders a search engine more reliable source

of right and updated information [7,9].

It may be noted (see Figure 1) that the crawler is provided with a

list of URLs. It visits the destined websites and depending upon

the host protocol, downloads the desired documents.

Figure 1. Architecture of a typical web search engine

The general algorithm of a web crawler is given below :

 Begin

 Read a URL from the set of seed URLs;

 Determine the IP address for the host name;

 Download Robot.txt file which carries downloading permissions

 and also specifies the files to be excluded by the crawler;

 Determine protocol of underlying host like http, ftp, gopher etc.;

 Based on the protocol of the host, download the document;

 Identify the document format like doc, html, or pdf etc.;

 Check whether the document has already been downloaded or not;

 If the document is fresh one

 then

 Read it and extract the links or references to the other cites

 from that documents;

 else

 Continue;

 Convert the URL links into their absolute URL equivalents;

 Add the URLs to set of seed URLs;

 End.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 1

48

2. RELATED WORK

A periodic crawler [12] visits the web sites until its collection has

a desirable number of pages and stop visiting pages. Whenever it

needs to refresh its collection, it revisits the sites, creates a new

collection and replaces the old collection with the new. Whereas

an incremental crawler [12] refresh existing pages and replaces

less important existing pages with more important new pages. It

crawls (Figure 2) the web sites continuously, refreshes local

collection and provides fresh information to the user. Good

freshness can only be guaranteed significantly by simply revisiting

all pages very frequently and selecting the page that will increase

the freshness most significantly.

Figure 2. Architecture of an Incremental web crawler

The incremental crawler consists of three main data structures

ALL_URLs, COLL_URLs and LocalCollection, and three main

software modules RankingModule, UpdateModule and

CrawlModule.

Where :

 ALL_URLs : Set of All URLs accessed/to be

 accessed.

 COLL_URLs : Set of All URLs in the Local Collection

 LocalCollection : Collection of downloaded pages related to

 URLs in COLL_URLs

The RankingModule continuously scans through ALL_URLs and

the LocalCollection to take the right refinement decision.

UpdateModule selects a URL from COLL_URLs, downloads the

page, and if changed; updates the LocalCollection. The

CrawlModule crawls a page and saves/updates the page in the

LocalCollection based on the request from UpdateModule. The

CrawlModule also extracts all links/ URLs on the crawled page

and adds in ALL_URLs.

The design of an incremental crawler needs to address the

following issues :-

(a). Keep the local collection fresh : The freshness of pages in

local collection depends on the strategy used, so the crawler

should use the best policies to keep the local collection fresh.

This includes adjusting the revisit frequency for a page based

on its estimated change frequency.

(b). Improve quality of the local collection : The crawler

should increase quality of the local collection by replacing

less important pages with more important pages. It is

necessary because of two reasons; firstly, pages are

constantly created and removed, and some of the pages

created may be more important than existing pages in the

local collection. So, the crawler needs to replace less

important existing pages with more important new pages.

Secondly, the importance of existing pages also changes over

time. So, when some existing pages become less important

than previously ignored pages, then the crawler should

replace less important existing pages with previously ignored

new pages.

Some approaches [3,5,12] have proposed many ways to manage

dynamic information on the web. When pages are changing very

fast, then these crawlers need to visit the pages as frequently as

possible. Today when web size has become very large; these

revisits not only engage the network traffic for a longer time but

the crawler will also not be able to crawl the complete web in

feasible time.

Sharma et al [2] has addressed the above issues by managing the

dynamic information more efficiently by putting volatile

information using separate HTML tags. These tags and

information are stored in a separate file having same name with

extension .TVI (table of variable information). The TVI file is

updated every time the changes are made to the hypertext

document. The crawler checks the contents of TVI file for any

changes and accordingly updates its collection.

A critical look at the available literature [5,7,10,12,13] indicates

that for the purpose of revisiting policies to refresh a web page;

almost all studies have focussed on frequency of change of a page

as a parameter. Since all pages do not change at same interval of

time, they can not be refreshed at same frequency. Rather, the

pages that change fast need to be refreshed fast as compared to

those change least.

In this paper, an alternate approach has been proposed to manage

the process of revisiting of a web site. It employs an ecology of

crawl workers to crawl the web sites. Crawl manager extracts

URLs from each queue of URLs and distribute them among crawl

workers.

3. PROPOSED WORK

Based upon updation activity, web documents can be categorized

and grouped as follows :

(i). The pages that changes very frequently (say every six

hours)

(ii). The pages that changes frequently (say every twelve

hours)

(iii). The pages that changes less frequently (say daily)

(iv). The pages that changes further less frequently (say weekly)

(v). The pages that changes lesser frequently (say fortnightly)

(vi). The pages that changes further lesser frequently (say

monthly)

(vii). The pages that changes least frequently(others)

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 1

49

Keeping in view the above categorization, the crawler may visit a

site frequently and the frequency of visits may be adjusted

according to the category of the site. Frequency of updation is a

major factor that decides as when to revisit a page, and is directly

proportional to the number of visits to the site and hence the

network traffic. So, a page that change very frequently say every

six hours, needs to be revisited frequently as compared to the page

that change less frequently say every year, needs to be revisited

least frequently.

The complete architecture of the proposed priority based

frequency regulated incremental crawling module is given in

Figure 3.

The crawler maintains following main data structures :

1. UrlQ(1…n) :

Store URLs to be crawled category wise in „n‟ queues and

within each queue URLs arearranged PageRank wise.

Initially all Url queues is populated with seed URLs.

2. Documents/URLs buffer :

Buffer to store URLs and web documents crawled by the

Crawl workers.

3. Database :

Stores web pages (DbPages), related URLs (DbURLs) and

new URLs found (DbNewURLs) in the Database.

The main software modules of the proposed crawler are

CrawlManager, PriorityManager, Save/Update, an update trigger

(Upd_Trig), and Crawl Workers (CW1..CWn).

1. CrawlManager :

It extracts URLs from URL queues and distribute them

among the various Crawl workers CW1…CWn.

Algorithm for Crawl manager is given in Figure 4.

2. Save/Update module :

Updates the Database in search/insert fashion by replacing

old version with fresh version of the page. If such page

does not exist, insert the new page.

Algorithm for Save/Update module is given in Figure 5.

3. Upd_Trig :

An update trigger that gets activated after regular intervals

and supplies all URLs from the Database to the

PriorityManger.

4. PriorityManager :

Computes refresh rate/frequency of the URLs dynamically

and populates URL queues UrlQ(1..n) for next refresh

cycles. It also prompts the CrawlManager to proceed

further.

Algorithm for Priority manager is given in Figure 6.

5. Crawl Workers :

Crawl Workers crawl the web, download pages and extract

new URLs embedded in the pages.

The refresh rate/frequency is computed [5] dynamically by the

following formula :

tn+1 = tn + t

(1)

Where :

 tn is current refresh time for any site

 tn+1 is adjusted refresh time and

 t is change in refresh time to be calculated

 dynamically

The value of t may be positive or negative, based upon the

degree of success (pc) that the site contains the volatile

documents. The degree of success is computed in terms of number

of hits by detecting the frequency of changes occurred in the

documents on a site.

A unit step function u(pc) for the computation of t is,

t={(1-pc/pg)*u (pc-pg)+(1-pc/pl)*u (pl-pc)}* tn (2)

Where pg, pl are the boundary conditions (upper and lower

threshold values of pc respectively)

 1 if pc >0

 And u (pc) =

 0 otherwise

The URL queues UrlQ(n) store URLs refreshing time wise

wherein they are stored PageRank wise. All the URLs to be

crawled may be distributed among UrlQ(1..n) based upon

formula 3.

For each UrlQ(n) = (n-1)2 *20 units to n2 *

20 Units
(3)

i.e. range of refresh time limits for various queues are as follows :

 UrlQ(1) : 0 to < 20 Units

 UrlQ(2) : 20 to < 40 Units

 UrlQ(3) : 40 to <180 Units

 ………………………………

 UrlQ(9) : 1280 to <1620 Units

 UrlQ(10): >=1620 Units

The frequency of revisiting may be decided as per formula (4) for

each nth queue of URLs i.e. frequency of selection of URL to be

crawled from each of the queues are as follows :

For each UrlQ(n) n2 * 20 sec (4)

 UrlQ(1) : at each 20 Sec

 UrlQ(2) : at each 80 Sec

 UrlQ(3) : at each 180 Sec

 …………………………

 UrlQ(10) : at each 2000 Sec

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 1

50

Figure 3. Architecture of proposed crawling module

Figure 4. Algorithm for Crawl Manager

Figure 5. Algorithm for SaveUpdate

SaveUpdate()

{

 Reads a URL & page downloaded from buffer

 If URL exists in database

 then

 If page changed then updates it in the database

 else

 Find Page Rank of the page

 Select page_to_discard page with lowest page rank

 Discard page_to_discard and its URL

 Adds URL & Page in the database

 Pass all new URLs found in new page to the Priority Manager

}

Crawl Manager()

{

 Read a URL from UrlQ(n)

 Creates a crawl worker CW(n)

 Download new page from the web and extracts new URLs found

in the page

 If URL exists in buffer

 then

 If page changed, updates it in Document/URL buffer

 else

 add URL, page to Document/URL buffer

 Add/replace new URLs to Document/URL buffer

 Passes an Update signal to SaveUpdate()

}

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 1

51

Figure 6. Algorithm for Priority Manager

The CrawlManager selects the next URLs url_to_extract from

each queue of URLs UrlQ(1..n) and distributes them among

various crawl workers CW1.....CWn. Each Crawl Worker crawls

the web, downloads page and extracts new URLs embedded in the

page. The extracted URLs, downloaded documents and new

URLs are stored in the Document/URL buffer and signal called

“Update” is send to Save/Update process.

Save/Update picks-up extracted URLs, downloaded documents

and new URLs stored in the Document/URL buffer and updates

the Database in search/insert fashion. It checks for existence of

URL extracted in DbURLs of Database, if URL exists; replaces

old version page_existing with new version page_extracted of the

page. If such URL does not exist, it inserts the new URL and

page_extracted to the Database. It also adds all the newURLs

found on page from Buffer to the DbNewURLs.

An update trigger Upd_Trig in the Database, gets activated and

the Priority Manager extracts URLs from the Database, computes

refresh rate/frequency of the URLs dynamically; and adds them to

the respective queues of URLs UrlQ(1…n) and populates them. It

also sends a signal “something_to_crawl” to the Crawl Manager

for further processing.

In fact, the Crawl Manager extracts URLs from each URL queue

and distribute them among several crawl workers. Each crawl

worker crawls the web and updates the Database. It gives proper

chance to each URL to be crawled. The priority manager

computes page refresh frequency dynamically to store all URLs in

specific UrlQ(1…n).

Thus, the architecture designed in this work, is not only

incremental but also scalable that can be parallelized at URL

queues and crawl workers level, responsible for downloading

documents from the web.

4. CONCLUSION

The proposed architecture of incremental web crawler manages

the process of revisiting of a web site with a view to maintain

fairly fresh documents at the search engine site. The computation

of refresh time helps in improving the effectiveness of the

crawling system by efficiently managing the revisiting frequency

of a website; and appropriate chance to each type of website to be

crawled at a fast rate. Moreover, the architecture is suitable for

parallel application.

5. REFERENCES

[1] A. K. Sharma, J. P. Gupta, D. P. Agarwal, “Augment

 Hypertext Documents suitable for parallel crawlers”,

 accepted for presentation and inclusion in the proceedings

 of WITSA-2003, a National workshop on Information

 Technology Services and Applications, Feb‟2003, New

 Delhi.

[2] A. K. Sharma, J. P. Gupta, D. P. Agarwal, “ A novel

approach towards management of Volatile Information”

Journal of CSI, Vol. 33 No. 1, pp 18-27, Sept‟ 2003.

[3] Alexandros Ntoulas, Junghoo Cho, Christopher Olston,

“What‟s new on the Web ? The Evolution of the Web

from a Search Engine perspective.”, In Proceedings of the

World-Wide Web Conference (WWW), May 2004.

[4] Arvind Arasu, Junghoo Cho, Hector Garcia-Molina,

Andreas Paepcke, Sriram Raghavan "Searching the Web."

ACM Transactions on Internet Technology, 1(1): August

2001

[5] Ashutosh Dixit, Harish Kumar and A.K Sharma, “Self

Adjusting Refresh Time Based Architecture For

Incremental Web Crawler”, International Journal of

Computer Science and Network Security (IJCSNS), Vol 8,

No12, Dec 2008.

[6] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert

E. Kahn, Leonard, Kleinrock, Daniel C. Lynch, Jon

Postel, Larry G. Roberts, Stephen Wolff, “A Brief History

of the Internet”, www.isoc.org/internet/history.

[7] Brian E. Brewington and George Cybenko. “How dynamic

is the web.”, In Proceedings of the Ninth International

World-Wide Web Conference, Amsterdam, Netherlands,

May 2000.

[8] C. Dyreson, H.-L. Lin, Y. Wang, “Managing Versions of

Web Documents in a Transaction-time Web Server” In

Proceedings of the World-Wide Web Conference.

[9] Dirk Lewandowski, “Web searching, search engines and

Information Retrieval, Information Services & Use”, 25

(2005) 137-147, IOS Press, 2005

[10] Heydon A., Najork M., “Mercator: A scalable, extensible

Web crawler.”, World Wide Web, vol. 2, no. 4, pp. 219-

229, 1999.

[11] J. Dean and M. Henzinger, “Finding related pages in the

world wide web”, Proceedings of the 8th International

World Wide Web Conference (WWW8), pages 1467-

1479, 1999.

[12] Junghoo Cho and Hector Garcia-Molina. 2000a. “The

evolution of the web and implications for an incremental

crawler”., In Proceedings of the 26th International

Conference on Very Large Databases.

Priority Manager()

{

 While (URLs) // accepted URLs from the database

 {

 Find Page Rank, Frequency of refreshing of a URL

 Add/replace URL in appropriate queue of URLs UrlQ(n),

 refreshing time wise, wherein arranged page rank wise

 Passes Something to crawl signal to the Crawl Manager

 }

}

http://oak.cs.ucla.edu/~cho/papers/cho-toit01.pdf
http://oak.cs.ucla.edu/~cho/papers/cho-toit01.pdf
http://oak.cs.ucla.edu/~cho/papers/cho-toit01.pdf
http://www.isoc.org/internet/history/brief.shtml#leiner
http://www.isoc.org/internet/history/brief.shtml#cerf
http://www.isoc.org/internet/history/brief.shtml#clark
http://www.isoc.org/internet/history/brief.shtml#kahn
http://www.isoc.org/internet/history/brief.shtml#kahn
http://www.isoc.org/internet/history/brief.shtml#kahn
http://www.isoc.org/internet/history/brief.shtml#kleinrock
http://www.isoc.org/internet/history/brief.shtml#lynch
http://www.isoc.org/internet/history/brief.shtml#postel
http://www.isoc.org/internet/history/brief.shtml#postel
http://www.isoc.org/internet/history/brief.shtml#postel
http://www.isoc.org/internet/history/brief.shtml#roberts
http://www.isoc.org/internet/history/brief.shtml#wolff
http://www.isoc.org/internet/history

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 1

52

[13] Junghoo Cho and Hector Garcia-Molina, “Estimating

frequency of change”, 2000, Submitted to VLDB 2000,

Research track.

[14] Komal Kumar Bhatia, A. K. Sharma, “A Framework for

Domain-Specific Interface Mapper (DSIM)”, International

Journal of Computer Science and Network Security

(IJCSNS), Vol 8, No12, Dec 2008.

[15] Mark Najork, Allan Heydon, “High- Performance Web

Crawling”, September 2001

[16] Mike, Burner, “Crawling towards Eternity : Building an

archive of the World Wide Web”, Web Techniques

Magazine, 2(5), May 1997

[17] Sergey Brin and Lawrence Page. “The anatomy of a large-

scale hyper textual Web search engine”. Proceedings of

the Seventh International World Wide Web Conference,

pages 107—117, April 1998.

[18] S. Chakrabarti, M. van den Berg, and B. Dom,

“Distributed hypertext resource discovery through

examples”, Proceedings of the 25th International

Conference on Very Large Databases (VLDB), pages 375-

386, 1999.

[19] www.w3.org/hypertext/WWW/MarkUp/MarkUp.html--

official HTML specification

[20] Y. Yang, S. Slattery, and R. Ghani, “A study of

approaches to hypertext categorization”, Journal of

Intelligent Information Systems. Kluwer Academic Press,

2001.

http://www.w3.org/hypertext/WWW/MarkUp/MarkUp.html--official
http://www.w3.org/hypertext/WWW/MarkUp/MarkUp.html--official

