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ABSTRACT 

Performance of the data warehouse depends on physical design. 

Index selection and storage of multidimensional data bases are 

important activities of physical designing process. Conventional 

indexing techniques such as bitmaps, B-trees and hash based 

indexing systems need large storage space for storing indexes 

along with data itself. Spelling variants, misspellings and 

transliteration differences are source of uncertainty in data with in 

the databases.  Misspelled and distorted key values are also hard 

to map in present indexing systems. In this paper neural network 

based physical design is suggested, a class of artificial neural 

network known as self-organizing net is used for indexing data 

warehouse at physical level. Indexes of active neurons will be 

used for generating indexes for the data values. In conventional 

indexing techniques every key value is mapped to a specific point 

in space, while in neural network based database indexing system, 

every key value is mapped to a region in space. This region is a 

class to which the key values of similar type belong. Indexes 

generated through this method used optimal space for storage, as 

only final weight matrices after training of neurons are stored. 

Self-organizing net based indexing is very robust as distorted key 

values get indexed to right classes. Accuracy of our self-

organizing net based indexing system in mapping key values with 

distorted keys is found to be high. 
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1. INTRODUCTION 
Data warehouses stores historical data to support 

decision making process. Data warehouses are several orders of 

magnitude larger than the operational data- bases. Data 

warehouses and OLAP systems are based on a multidimensional 

model.  The multidimensional model views data in an n-

dimensional space, usually called a data cube. Data cubes are 

constructed around quantitative values called measure values, 

which are needed to analyze from various perspectives called 

dimensions [14, 15, 21, 22, 29, 30, 31]. Multidimensional model 

represented by ),.....,;,.....,( 2121 mn MMMDDDDC , 

where in data cube DC there are n dimensions and m measure 

values. A cell ),,....,( ,,2,1 mdddc inii  where m is measure 

value stored in cell defined by dimensional values as ijd ,  i.e.   ith  

value of  jth dimension[21,29].  Cell in multidimensional space 

represents a tuple. 

 
Figure 1. Pictorial representation of sales data cube 

 

The data cube in the figure 1 is representing sales data 

cube with three dimensions “City”, “Product” and “Time” and 

measure value in the cells are sales figure in millions taken for 

analysis of sales of products in the given cities for three years. 

Each measure value in cell is identified by the instances of the 

dimensions used to define that particular value. For instance sales 

value for product “Product A” at city “Dallas” in year “2004” is 

14M (14 million) [14, 15, 22, 27, 30, 31].  Data cubes are 

constructive blocks for data warehouses. Implementation of data 

warehouse follows both logical and physical design 

considerations [22].  

 

1.1.  Logical data warehouse design 
There are two approaches for implementing a 

multidimensional model, depending on the way in which data 

cube is stored. Traditionally, OLAP system has been built on top 

of a relational database system, therefore, referred as relational 

OLAP (ROLAP), where data is stored in tables. Relational OLAP 

model consists of a fact table and dimensional tables for each 

dimension. These dimension tables are referenced using foreign 

keys in fact tables [16, 17, 30]. Fact tables are made around some 

subject such as sales, purchase etc, for which data warehouse is 

defined. Alternatively, multidimensional OLAP (MOLAP), 

systems use multidimensional arrays as multidimensional data 

structures. In MOLAP, only measure values are stored and 

dimension values are treated as the indexes of the 

multidimensional arrays.  Data is stored in multidimensional 

structures, which is a more natural way to express the 

multidimensionality of enterprise data. MOLAP system is faster 

and required less space as compared to ROLAP systems [14, 15, 

16, 17, 21, 22, 29, 31].  Fast access to the data from OLAP system 

is primary goal. For analysis OLAP data cubes often use pre-

computed aggregates at various levels of detail using various 

combinations of attributes [2, 21, 29]. Data cube will be stored in 

memory in the form of pre-computed aggregates called cuboids. 
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Various algorithms are present for data cube computation [2, 21, 

29, 30], which are successfully implemented. In this paper, we use 

multi-way array cubing algorithm for computation of aggregated 

cube which are stored in sparse matrices. The multi-way 

algorithm is effective when the products of the cardinalities of the 

dimensions are moderate [30]. If A, B, C, and D are the 

dimensions then total 24=16 aggregate cuboids are possible. 

Taking ABCD as base cuboid figure 2 shows and aggregate at 

dimension B that results in cuboid ACD used to compute AD, 

which in turn can be used to compute A. This shared computation 

allows multi-way to perform aggregations simultaneously on 

multiple dimensions. These cuboids get physically stored in the 

memory for aggregate queries.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Top-down Cuboids computation 

1.2 Physical data warehouse design 
Performance of the multidimensional databases depends 

on the logical and physical design of these multidimensional 

databases [3, 6, 7, 14, 17, 27, 30]. Physical level designs of the 

data warehouse deals with the database partitioning materialized 

views, indexing and clustering of records [3, 7, 22]. Indexing at 

physical layer is used to improve the performance of logical layer 

[27]. Data warehouse are read-only data for complex 

multidimensional queries. Indexing on single attribute is not a 

solution for indexing multidimensional data [14, 15, 22, 27, 30, 

31]. Conventional indexing techniques use data structures for 

indexing multidimensional data cubes, which consumes large 

amount of storage space for storing indexes apart from data itself. 

Some literature shows use of B-tree for indexing individual 

attributes rather than single key attribute for indexing 

multidimensional databases at physical layer [31]. Bit encoded 

sparse structure, are used for multidimensional indexing [15]. In 

Bit-encoded sparse structure, chunking of the multidimensional 

array based data cube takes place. For each cell in a chunk, a 

dimension index is encoded in bits for each dimension. Due to this 

data cube get compressed [15].   Bitmap indexing is a kind of 

indexing system in which a bit vector is associated with each 

value of column on which indexing is done.  Bitmaps are useful 

for columns that have low cardinality [22], therefore, some 

products follow a hybrid approach. In a hybrid approach, a B-tree 

is used when the list of qualifying RIDs per entry are small, 

otherwise a bit-mapped index is used. Dynamic bit-maps are also 

used to handle high cardinality data and large range queries to 

construct the bit-maps dynamically from vertical partitioned fact 

table respectively [27]. High performance data warehousing 

techniques use parallel algorithms for implementing parallel 

indexing system to increase the performance of the analytical 

processing systems. Parallel and scalable infrastructure for 

multidimensional array based data cube is used for increasing the 

performance of the system [14, 15]. These indexing systems are 

not robust as distorted key values, noise and misspelled keys are 

not indexed properly. Storing indexes along with data consumes 

large memory.    

 

Uncertainty in the data requires attention. Spelling 

variants, misspellings, and transliteration differences are source of 

uncertainty in data with in the databases. Conventional indexing 

techniques fail to map the misspelled and destroyed key values 

[13, 31]. Performances of these indexing methods are better for 

lower dimensional datasets and for online transaction processing 

systems. However, they could not provide adequate results in 

online analytical processing systems. These data structures needed 

space not less than the data itself [1, 4, 5, 7, 9, 12, 18, 19, 20, 23, 

28].  Multidimensional database systems need an indexing system 

that stores indexes in less space and takes lesser time to generate 

multidimensional indexes. In database, individual indexes 

generated for each record or cluster index is generated for a group 

of records. Indexing is done on records using values of key 

attributes [1, 9]. Indexes are also needed to be stored in secondary 

storage devices. High performance string hash function is 

proposed in which each character of text requires only an 

exclusive-OR operation and an indexed memory read [25]. 

Hashing string type value and alphanumeric keys is solved by 

using classes of string hash function [26]. Problem of mapping 

misspelled words to memory was not solved using class of string 

hash functions. B-tree index need four times more space than the 

storage of corresponding database on which indexes are created. 

Dynamic hashing techniques are developed by combining them 

with the binary tree, which are better than static hashing. Their 

performance is better than the separate chaining method and 

memory requirement is also under control [23]. Hashing provides 

fastest possible access for retrieving an arbitrary record given the 

value of its hash field. However, collision management degrades 

the overall performance [22]. Hash based indexing method is hard 

to implement as maintaining large number of hash function for all 

dimensions is not possible.  Some improvements are done through 

the use of compressed bitmap indexing of high dimensional data 

[18]. Many design techniques use horizontal table partitioning, 

materialized query table, and multidimensional clustering for fast 

query processing [6]. DB2 physical design advisor uses horizontal 

partitioning for distributing data on non-shared parallel machines 

and multidimensional clustering for data cube construction [3, 7]. 

Data structures such as SR-trees, skeleton R-trees and skeleton 

SR-trees are constructed by combining memory resident data 

structure (segment trees) and disk oriented indexing structures (R-

trees) to provide data structure for multidimensional data sets. 

This approach is beneficial for indexing multidimensional 

databases and spatial data [19].    

 

Clustering techniques in data mining are used to group 

data with similar properties. These clustering techniques solve 

nearest-neighbor queries. Data with similar properties get 

collected around data center of different clusters. Uncertainty in 

the data requires attention. Spelling variants, misspellings, and 

transliteration differences are source of uncertainty in data within 

the databases. Clustering of data values which are approximately 

similar to each other is a solution for finding similar values. On 

this basis, new method of approximation of similar strings is done. 

Clustering techniques are applied on strings for grouping them 
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together in files [13]. Different statistical and non-statistical 

clustering techniques are also available. Probability based 

statistical model for indexing, also called as density based 

indexing (DBIN), use probability density method to drive indexes 

over the data table. DBIN shows problem of numerical instability 

while indexing databases with high cardinality attributes. But an 

indexing system based on clustering technique is very useful in 

solving the problem of uncertainty in large databases. In this 

indexing system, search time reduces due to partitioning of the 

database into small clusters [5].  

 

In this paper, self-organizing net is used for indexing 

data warehouses at physical level. According to theoretical and 

empirical justifications, neural network based methods are better 

than the statistical methods. Many self-organizing net like 

MAXNET, ART1, ART2 and kohonen network are available 

[24]. In this paper, self-organizing net describe by Yoh-Han Pao 

in taken into consideration due to its less complex 

implementation. It supports unsupervised learning based on 

discovery of clusters [24]. This neural network works as ART1 

but also shows features of kohonen. Data taken into consideration 

consists of three dimensions and total six thousand five hundred 

records. Self-organizing net is used for clustering data values that 

have least Euclidean distance with weight values assigned to the 

neurons. Index value assigned to the data value, is equal to the 

index of the active neuron.  In self-organizing net based indexing 

method, no extra efforts are needed to solve the problem of 

overlapped indexes. Indexes generated through this method use 

optimal space for storage, as only final weight matrices after 

training of neurons are stored for each dimension. Indexes are 

regenerated using saved weights, in less time. Single self-

organizing net is used for indexing the data for all the dimensions. 

While in hashing different or multiple hash functions may be 

used.  These indexes are used for the construction of MOLAP data 

cube. Self-organizing net based indexing is very robust as 

distorted key values also get indexed to the right class. Sparse 

structures are used to store these data cubes. 

 

Organization of the paper is as follows: Section 2 

describes neural network based indexing method with example. In 

Section 3, result of experiment is shown using precision-recall 

graph, which shows the performance of self-organizing net. 

Finally, in Section 4, we have given conclusion of the paper. 

 

2. Self-Organizing Net for physical layer 

design of Data warehouse 
 

In multidimensional database, attributes are referred as 

dimensions and records consist of values for each dimension [10]. 

Number of different values in a dimension is the cardinality of the 

dimension. Construction of multidimensional data cube is always 

better for fast data access in OLAP system. A cell in 

multidimensional space represents a tuple, with the attributes or 

dimensions values of the tuple identifying the location of the tuple 

in the multidimensional space and the measure values represent 

the content of the cell [13, 15, 23]. Indexing of the 

multidimensional database is done by indexing each data value of 

every dimension. Data values of each dimension have an index 

number, which is the index of its position in the multidimensional 

array taken for construction of the data cube. Data set taken in our 

indexing process consists of export data set providing information 

about the amount of sales of commodities to hundred countries in 

last eleven years. Data set consists of three dimensions as 

“Country_name” with cardinality 100, “Commodities” with 

cardinality 101, “Year” with cardinality 11 and the fact value 

attribute “Amount_of_Sales”. Total records are about 6437. 

Sample of the fact table is shown in Table 1. 
 

Table 1. Sample of data taken into consideration 

(Source: website, www.dgft.delhi.nic.in) 

 

In conventional indexing system for indexing on each 

dimension, the dimension key values are used. Each key value of 

the dimension is stored in data structure used by the indexing 

system. In B-trees and their variants, key values are stored in the 

leaf nodes that point the key values to their indexes in 

multidimensional array [31]. Thus, for each dimension a separate 

data structure is used for storing indexes, which consumes 

separate memory. For example, to know the amount of sales of 

beverages in China in the year 2001-2002, we need the index 

number of “China”, “beverages” and year “2001-2002” of the 

first, second and third dimension of multidimensional array based 

data cube and access the fact value 127.46. In this paper, indexing 

of multidimensional data cube is shown through neural network 

techniques. Indexes for all dimension values are generated and 

stored in sparse matrix. The sparse matrix defines data cube for 

data set. 

 

2.1. Our approach for multidimensional   

database indexing 

Indexing of the multidimensional database is done by indexing 

each data values of each dimension. Each dimension of the data 

cube will have size equal to the cardinality of the dimension. To 

achieve this, each unique value of the dimension should have 

unique index number on its dimensional axis. Value in the cell, 

will directly be accessed by its position in multidimensional array, 

will be calculated using indexes for the data values on the axis. 

Indexes for data values of each dimension can be generated using 

clustering technique applied separately on each dimension. The 

similar values of each dimension are grouped together in a class 

or cluster, with a cluster number assigned to it. This cluster 

Country_Name Commodities Year Amount_of_Sales 

China Pearls 
1996-

1997 
74.99 

China 
woven pile 

fabrics 

1997-

1998 
3.82 

Russia Pearls 
1999-

2000 
1748.54 

Nepal Pearls 
2000-

2001 
50.17 

China Beverages 
2001-

2002 
127.46 

Nepal Beverages 
2002-

2003 
1093.38 

Russia Beverages 
2003-

2004 
70.09 

China 
chemical 

compounds  

2005-

2006 
2372.57 

Nepal 
chemical 

compounds 

2006-

2007 
1744.87 
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number will be the index of all values of the cluster. The cluster 

index number of a data value in a dimension will be its index on 

dimensional axis belonging to that dimension. For example 

clustering is done on the dimension “Country_name” and its data 

value “china” is assigned to cluster having index 1. Then “china” 

is having index 1 on dimension axis defined for dimension 

“Country_name”.  Similarly clustering is done on other dimension 

data values of second dimension “Commodities” and data value 

“PEARLS” is assigned to cluster with index number 3. Then 

“PEARLS” is having index 3 on dimension axis define for this 

dimension. Suppose the cluster index for “1996-1997” is 4 then its 

index on dimension axis will be 4. The first tuple (“china”, 

“PEARLS”, “1996-1997”, 74.96) will be represented in data cube 

as a cell containing 74.96 having indexes (1,3,4) in three 

dimensional array. System does not have a prior knowledge of 

number of classes or clusters in which data will be classified. 

There is a need of an algorithm which performs clustering 

operation and gives indexes to each key value of the dimension 

taken for indexing.  In this paper clustering technique is applied 

on data values of each dimension for grouping similar data values 

together and generates a class index number for it. 

 

2.2. Neural network based indexing of 

multidimensional databases 

 
While indexing a multidimensional data base, each dimension is 

taken into the indexing process separately. Clustering is needed to 

perform on the data values so that similar data values are grouped 

together into different classes. Cardinality of the dimension is not 

fixed. So, number of classes can not be known previously. Due to 

unsupervised learning, clustering is best suited for indexing of 

dimensional data values. Neural network architecture can be 

employed for both supervised and unsupervised learning 

paradigms. Type of neural network architecture used for 

clustering of input patterns depends on the characteristic of given 

data set. Looking at the problem of indexing multidimensional 

data bases, the data set taken for clustering are the data values of 

each dimension. Input patterns for the neural network are n-

dimensional feature vectors which describe each data value of a 

dimension. Construction of input data is described later. Outputs 

of the neural network are indexes of the classes in which all the 

patterns are classified. Since the cardinality of the dimension is 

not fixed, data in data warehouse are updated after a certain time 

interval. Its size increases exponentially. New data values are 

added to each dimension. In conventional indexing system no 

extra efforts are required for adding new data values. So, new 

system of indexing should have this facility. Clustering can be 

performed using neural networks.  

  

Input to the self-organizing net is feature vector which 

define each value of a dimension. Output is the index of cluster to 

which data values of the dimension belongs. The algorithm 

followed by this network to make clusters of data values have 

following steps. 

 

1. This self-organizing net creates a node and assign 

first pattern as weight of node. 

2. Calculating Euclidean distances of all patterns with 

weight assign to this newly created cluster. Pattern 

belong to cluster will have at minimum Euclidean 

distance from that cluster. 

3. A threshold value is taken as vigilance parameter. 

If square root of minimum Euclidean distance for a 

pattern is less than and equal to threshold then 

pattern will belong to cluster and its number will 

be the index of key value defined by this pattern 

and weights of this node get updated. 

4. If square root of minimum Euclidean distance for a 

pattern is more than threshold then a new cluster 

node is created with pattern which does not belong 

to earlier created clusters. Repeat steps 2 to 4.   

5. Finally after training updated weights are saved for 

a particular dimension.  

 

This self-organizing net gives unique index of each key value in 

the dimension so that indexes do not overlapped.  In case a new 

data value is added to the dimension then mapping of this data 

value is done with only following the steps 2 through 4. If no 

category exits, a new cluster is made for new data value, this 

mechanism is beneficial while indexing data is data bases. The 

weights saved for each dimensions will work both for data 

accessing and adding new data values to the respective or new 

clusters. This discovery of clusters based unsupervised net is well 

suited for indexing data cube. In Kohonen’s network, any new 

pattern that does not belong to the clusters already constructed is 

still forced into one of them using the best match strategy, without 

taking into account how good even the best match is. This way 

overlapped data values in the same cluster will affect the quality 

of indexing process [24]. This problem of stability of weights as 

well the inability to accommodate patterns belonging to new data 

values, can be  solved  using neural nets based on adaptive 

resonance theory (ART). Our algorithm is based on the principle 

of ART network, also, shows the feature of kohonen network. It 

also preserves topology.  Number of clusters generated equal to 

the cardinality of the dimension. Input features vectors are 

constructed for each dimensional data. This is the input to the self-

organizing map used for indexing each dimensional value. 

 

2.3 Input feature vector construction 
 

For the input to self-organizing net, input matrix is defined, which 

consists of vectors of parameter values defined for each value of 

the dimension. Values of the dimension are chosen for preparing 

input parameters. Each character of the key value is assigned a 

numeric value from the character reference table of the particular 

dimension. These values are used to define parameter vector for 

the key value. Character reference table of the dimension is 

prepared using histogram of the frequency of occurrence of each 

character in the values of dimension. The numeric value assign to 

a particular character in the dimension character reference table 

will be higher for the character with lowest frequency. Sample of 

dimension character reference table for first, second and third 

dimension are as shown in the following Tables: 
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Table 2 Dimension First Character Reference Table 

  

              

 

 

 

 

 

 

 

 

Table 3 Dimension Second Character Reference Table 

 

 

 

 

 

 

 
Table 4 Dimension Third Character Reference Table 

 

 

 

 
 

 

 

 

 

 
The above tables are used to define the parameters of each key 

value of the first, second and third dimension. Each value of 

dimension is defined by the numeric values of each character of 

key value taken from the dimension character reference table. 

These values define a key value of the dimension, which are, 

considered as parameters for the key value taken into 

consideration. Length of the input vector is equal to the length of 

longest key in that dimension. Sample input table of first 

dimension is shown in the Table 5. Length of the input vector for 

the first dimension is 16, which are according the length of 

longest key value of the first dimensions. Similarly input tables of 

other dimensions are defined for their values.  

 

 

Table 5 Input Table For First Dimension 
 

 

These parameters are available as a input to self-organizing net.  

Giving input to the self-organizing net, training starts and weights 

of the neighboring neurons of winning neuron gets updated for 

each input. After completion of training and testing of self-

organizing net, final weights for each dimension are stored. These 

weights will be used to calculate indices back at the time of 

accessing the data. The index numbers of the active neurons for 

each value of the dimensions are collected. These are the indices 

of the values. All the values belonging to a cluster will have same 

cluster number. Using the self-organizing net, for indexing each 

value of the dimension, no collision between the index values 

takes place, and the indexes generated during the training are in 

sequence as the values in the dimension. The index number for 

each value of the dimension will be considered while construction 

of MOLAP cube. This will also be optimal for storage purpose.  

 

2.4  Data cube construction using sparse 

matrices 
After scanning the fact table record-by-record and getting indexes 

for each value of the tuple, fact values are inserted at the position 

described by the index of each value of tuple. As 

multidimensional data cubes are sparse, sparse matrices are used 

to store index values of the nonzero cell entries. Defining a sparse 

structure, which have three variables for storing indexes of three 

dimensional values and the fourth variable for storing 

corresponding values. One instance of sparse structure is used to 

store one tuple. So, array of structure of size equal to the number 

of records of fact table is defined. Scanning each tuple of fact 

table and considering the value of each dimension to store its 

measure value into the sparse structure along with the indexes. 

Indexes of the dimensional values are generated using the weight 

matrixes of the dimensions. The weight matrixes of each 

dimension are stored and having final weight value of each node 

of self-organizing net after the training is completed. To get index 

of any value of dimension, an input vector is created using 

numerical values of characters of each dimensional value from the 

dimensional character reference table. Secondly Euclidean 

distance of this vector is calculated from each node of self-

organizing net using stored weight matrix of that particular 

dimension. The cluster index number generated, will be the index 

of that dimensional value. Index value for each value of the tuple 

is calculated and stored in the sparse structure along with it 

measure value. This way whole fact table is stored into the array 

of sparse structure. Sample of the data cube stored in the sparse 

structure is shown in the figure 3. 

 

 

 

 

Char Frequency Value 

a        7776 0.01 

i 4428 0.02 

n 4332 0.03 

s 3384 0.04 

e 3032. 0.05 

r 2381 0.06 

….. ……. ….. 

…. …. …. 

q 30 26 

Char Frequency Value 

a 12789 0.01 

b 12515 0.02 

s 11159 0.03 

t 10110 0.04 

r 9775 0.05 

… ……. …… 

….. ……. ….. 

j 21 0.26 

Char Frequency Value 

0 8768 0.01 

9 5272 0.02 

2 4677 0.03 

1 2930 0.04 

6 1173 0.05 

3 588 0.06 

8 587 0.07 

7 584 0.08 

5 583 0.09 

4 582 0.1 

x1 X2 ….. x13 x14 x15 X16 Value 

0.01 0.24 ….. 0 0 0 0 afghanistan 

0.01 0.07 ….. 0 0 0 0 albania 

0.09 0.01 ….. 0 0 0 0 cape verde 

0.11 0.10 ….. 0 0 0 0 philippines 

0.08 0.03 ….. 0.12 0.15 0 0 united 

kingdom 
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Figure 3 The data cube in sparse structure 

 

This figure shows that in the data cube each value of the 

dimensions have an index number along the three dimensional 

axes of the cube corresponding to the tuple of the fact table. Each 

row of the data cube is one instance of the sparse structure 

containing one tuple. The total instances are equal in the number 

as the total number of records in the fact table. In the 

multidimensional array based data cube each instance of the 

sparse data cube represents the one cell containing value of tuple. 

The purpose of taking each tuple in one instance of sparse 

structure is concerned with memory management as number of 

tuple increases then it will help in partitioning of the fact table 

stored in the sparse structures. The above data cube contains all 

the dimensions. High storage capacity is required to store the 

whole data cube. Decision support systems frequently pre-

compute many aggregates to improve the response time of 

aggregation queries. Data cube can computes aggregates along all 

possible combinations of dimensions called group-bys. Fast data 

accessing system need data cube to be stored in from of group-

bys. 2N-1 aggregates calculations are needed for N-dimensional 

data cube. In above case there are three dimensions and one 

measure value so 23=8 group-bys are calculated as 

{Country_Name, Commodities, Year}, {Country_Name, 

Commodities}, {Country_Name, Year}, {Commodities, Year}, 

{Country_Name},{Commodities}, {Year} and ALL. Collection 

of all the group-bys is called data cube. There are two ways to 

from group-bys formally before construction of sparse cube. The 

fact table can be partitioned and all the view of the fact dimension 

can be stored into sparse structures. This method is very costly as 

memory requirement is high. Secondly sparse data cube formed 

from original fact table can be use for aggregation along 

dimensions and group-bys formed will be stored in the sparse 

structure again [14,15]. Any group-by will be computed by 

selecting the smallest of the previously computed group-bys as its 

parent. In above data cube the cardinalities of the dimensions are 

100,101 and 11 form Country_Name , Commodities and  Year 

respectively.  The original data cube will be used for calculating 

group-bys {Country_Name, Commodities}, {Country_Name, 

Year}, and {Commodities, Year} from these group-bys the group-

bys {Country_Name}, {Commodities} and {Year} are computed 

using {Country_Name,Year} and {Commodities, Year} as they 

are smallest parents for these aggregates or group-bys. Similarly 

supper aggregate ALL is calculated from parent group-by {Year}. 

These group-bys are stored in sparse structures and used for 

aggregation queries which does not need to access data from 

original data cube this make it fast in accessing the data. Storing 

these group-bys also require less memory.  

 

3. EXPERIMENT AND RESULTS 
Three-dimensional dataset taken for experiment is a fact 

table with dimensionality 3 with one fact value attribute. 

Cardinality of the three dimensions is 100, 101, and 11 

respectively. Number of records is 6437. For this experiment, 

program is implemented using matlab6.0. Self-organizing net 

consists of variable number of neurons for each dimension.  

Single self-organizing net is used for each dimension. The 

indexes of the active neuron generated. These indices of 

active neurons are the cluster numbers for each value in a 

dimension. Final weights for neurons are stored for each 

dimension. These weights are used to regenerate the indices 

of data values at the time of   testing, data accessing and for 

inserting new values.  For the experimental verification 

cluster files for each dimension contain all the data values 

along with the index number generated for the value in the 

dimension. The index number of the data value will be the 

index of that value in the multidimensional array based data 

cube for the dimension to which it belongs. For the training 

of the self-organizing net for each dimension total 6437 input 

patterns are taken while testing 1713 input patterns are taken 

with distorted data values. After training the updated weights 

for the particular dimension are saved. For the testing of the 

classifier the test data set with distorted data values of the 

particular dimension is taken for input to the self-organizing 

net with the weight matrix which is saved for that dimension. 

As a result most of the distorted data values are correctly 

recognized and mapped to their respective clusters.  

For performance analysis of the self-organizing neural 

net a matching matrix is constructed to represent the result of 

the test. This matching matrix is between the actual and 

predicted classes also called n-dimension confusion matrix 

[8, 10, 11]. In this matrix the diagonal elements consists of 

truly positive and truly negative values. The row elements 

except the diagonal element for each class are the false 

positive values for a particular class. The column elements 

except the diagonal element for each class are the false 

negative values for a particular class [10, 11]. From this n-

dimension matching matrix, binary confusion matrices are 

constructed for each class with respect to other classes. So, 

there will be N binary confusion matrices for N classes. The 

entries of binary confusion matrix for a class is done by 

summing up of false positive, false negative, and true 

negative values with reference to this class. 

After training for the data values of first dimension, test 

data values with distorted data values is given as input to the 

self-organizing net. The results of the classification of data 

into classes are compared using matching matrix and 

construction of binary confusion matrix for each class. 

Figure 4 show the sample of matching matrix and binary 

confusion matrix for first class. 

Country_Names   Commodities  Year     value 

       1       1               1  8579.65 

       1          1           2 0.0 

       1          1     3 5.07 

       1          1     4  7.19 

       1          1      5  12.17 

       1          1               6   15.31 

       1          2               5           7724.16 

       1          2               6           2580.03 

       1          2               7     2670.2 

       1          2               8           11321.22 

       1          2               9       571.42 

       1          2              10    6804.55 

       1          3               8    19496.47 

       1          3              10         36597.24 

       1          3              11    18046.37 

       1          3               1             12953.64 

       1          3               2             13830.43 

       1         3          3     300.910000 

       2         1          7      29.750000 

       2         1          8      50.170000 

       2         1          9     153.640000 

       2         1         10     306.280000 

       2         1         11      90.740000 

       2         1          1     196.570000 

       2         2         11    2663.100000 

       2         4          1    9965.500000 

       2         4          2     200.690000 

       2         4          3   21093.410000 

       2         4          4   20944.480000 

       2         4          5   11267.640000 

       2         3          4     301.620000 
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  Figure 4(a). Matching matrix for 100 classes 

 Accuracy= (sum of diagonal elements/total elements of matrix ) x 

100 = 92.3977. 

 

        Actual Classes 

Predictive                  

Classes 
 

Column Total   P=9              N=1572 

  
TP/P=Recall=1  Precision=TP/(TP+FP)=0.9  

F-score=Precision x Recall=0.9 

 

Figure 4(b) Binary Confusion matrix for single class 

afghanistan 

 

In the above figure complete matching matrix shows the 

distribution of total 1713 patterns among the 100 classes. For 

example 10 patterns of afghanistan then matrix show 9 are 

correctly classified while 1 pattern is misclassified as ukraine. 

Form the matrix performance of the classifier for each class can 

be calculated and represented in a binary confusion matrix. For 

example binary confusion matrix is shown for first class 

afghanistan and also value of the performance parameters is 

calculated for this class. Now precision and recall values of all the 

classes are calculated and graph between these values is plotted as 

shown in the figure 5.                                                                        

 
 

Figure 5 Precision-Recall Graph 

The graph shows that large numbers of data values are 

nicely classified as many points in the graph have high precision 

and recall values. If the values of the precision are high for 

constant value of recall and vise-versa then the Precision-Recall 

graph is of best quality. The above graph shows that a break -even 

point at (1,1) this also show that the classifier performance is good 

for the test data. Average F-score for all the classes is above 80%.  

This also justifies the higher performance of classifier.  In 

conventional indexing techniques every key value is mapped to a 

specific point in space, while in self-organizing net based data 

base indexing system, every key value is mapped to a region in 

the space. This region is a class to which the key values of similar 

type belong. The class index number is the index for all data key 

values belong to that class. In self-organizing map based indexing 

method no extra efforts are needed to solve the problem of 

overlapped indices, as there is least possibility of collisions 

because every key value belong to independent class so this way it 

gives better response than hash technique. In hashing collisions 

occurs very frequently more than one hash function is used for 

indexing a key to avoid collision. Also distorted key value cannot 

be mapped using hashing or B-trees.  In our method of indexing 

single self-organizing map is used for indexing all the data values 

of the dimensions. Self-organizing maps show robustness in the 

indexing as they map the distorted keys to the right class. This is 

not possible with other indexing systems.   

Further work is possible on the robustness of this 

system of indexing as in some cases if the value of the lost 

character, is maximum in the character reference table then 

generating the right index of that key value is not possible. This 

limitation needs to be further studied.  Indexes generated through 

this method were found to use optimal space for storage, as only 

final weight matrices after training of neurons are stored. Space to 

store the final weight is less than the storage needed to store hash 

tables. Multidimensional data get compressed because self-

organizing map transforms an incoming n-dimensional input data 

into one or two dimension discrete map. Regenerating the indexes 

at the time of data cube construction at conceptual layer is quite 

easy as compare to hashing.  This system will perform better than 

hash based indexing system with respect to space and robustness.   

 

4. CONCLUSION 
Performance of data warehouse depends on its physical 

design. Indexing of data cubes plays major role in performance 

enhancement. In our work we support a neural network based 

indexing technique for indexing the multidimensional data cube.  

Self-organizing net can be used for data indexing in the 

multidimensional database that is better technique for indexing all 

the dimension values as compared to the traditional methods like 

Bit-map based indexing. As in data warehouses queries are based 

on read only system, no frequent updates are required in data 

warehouses. In conventional indexing techniques every key value 

is mapped to a specific point in space, while in self-organizing net 

based database indexing system, every key value is mapped to a 

region in space. This region is a class to which the key values of 

similar type belong. The class index number is the index for all 

data key values of the class. In self-organizing net based indexing 

method, no extra efforts are needed to solve the problem of 

overlapped indexes. Indexes generated through this method used 

optimal space for storage, as only final weight matrices after 

training of neurons are stored. Self-organizing net based indexing 

is very robust as distorted key values get indexed to right classes. 

It will perform well on a single or multi-computer system. 
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