
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

99

PHYSICAL DATA WAREHOUSE DESIGN USING NEURAL
NETWORK

Mayank Sharma
Galgotias College of Engineering &

Technology
Greater Noida(NCR) India

 Navin Rajpal
University School of Information

Technology
GGS Indraprastha University Delhi

B.V.R.Reddy
University School of Information

Technology
GGS Indraprastha University Delhi

ABSTRACT

Performance of the data warehouse depends on physical design.

Index selection and storage of multidimensional data bases are

important activities of physical designing process. Conventional

indexing techniques such as bitmaps, B-trees and hash based

indexing systems need large storage space for storing indexes

along with data itself. Spelling variants, misspellings and

transliteration differences are source of uncertainty in data with in

the databases. Misspelled and distorted key values are also hard

to map in present indexing systems. In this paper neural network

based physical design is suggested, a class of artificial neural

network known as self-organizing net is used for indexing data

warehouse at physical level. Indexes of active neurons will be

used for generating indexes for the data values. In conventional

indexing techniques every key value is mapped to a specific point

in space, while in neural network based database indexing system,

every key value is mapped to a region in space. This region is a

class to which the key values of similar type belong. Indexes

generated through this method used optimal space for storage, as

only final weight matrices after training of neurons are stored.

Self-organizing net based indexing is very robust as distorted key

values get indexed to right classes. Accuracy of our self-

organizing net based indexing system in mapping key values with

distorted keys is found to be high.

Keywords

Self-organizing net, multidimensional databases, indexing.

1. INTRODUCTION
Data warehouses stores historical data to support

decision making process. Data warehouses are several orders of

magnitude larger than the operational data- bases. Data

warehouses and OLAP systems are based on a multidimensional

model. The multidimensional model views data in an n-

dimensional space, usually called a data cube. Data cubes are

constructed around quantitative values called measure values,

which are needed to analyze from various perspectives called

dimensions [14, 15, 21, 22, 29, 30, 31]. Multidimensional model

represented by),.....,;,.....,(2121 mn MMMDDDDC ,

where in data cube DC there are n dimensions and m measure

values. A cell),,....,(,,2,1 mdddc inii where m is measure

value stored in cell defined by dimensional values as ijd , i.e. ith

value of jth dimension[21,29]. Cell in multidimensional space

represents a tuple.

Figure 1. Pictorial representation of sales data cube

The data cube in the figure 1 is representing sales data

cube with three dimensions “City”, “Product” and “Time” and

measure value in the cells are sales figure in millions taken for

analysis of sales of products in the given cities for three years.

Each measure value in cell is identified by the instances of the

dimensions used to define that particular value. For instance sales

value for product “Product A” at city “Dallas” in year “2004” is

14M (14 million) [14, 15, 22, 27, 30, 31]. Data cubes are

constructive blocks for data warehouses. Implementation of data

warehouse follows both logical and physical design

considerations [22].

1.1. Logical data warehouse design
There are two approaches for implementing a

multidimensional model, depending on the way in which data

cube is stored. Traditionally, OLAP system has been built on top

of a relational database system, therefore, referred as relational

OLAP (ROLAP), where data is stored in tables. Relational OLAP

model consists of a fact table and dimensional tables for each

dimension. These dimension tables are referenced using foreign

keys in fact tables [16, 17, 30]. Fact tables are made around some

subject such as sales, purchase etc, for which data warehouse is

defined. Alternatively, multidimensional OLAP (MOLAP),

systems use multidimensional arrays as multidimensional data

structures. In MOLAP, only measure values are stored and

dimension values are treated as the indexes of the

multidimensional arrays. Data is stored in multidimensional

structures, which is a more natural way to express the

multidimensionality of enterprise data. MOLAP system is faster

and required less space as compared to ROLAP systems [14, 15,

16, 17, 21, 22, 29, 31]. Fast access to the data from OLAP system

is primary goal. For analysis OLAP data cubes often use pre-

computed aggregates at various levels of detail using various

combinations of attributes [2, 21, 29]. Data cube will be stored in

memory in the form of pre-computed aggregates called cuboids.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

100

Various algorithms are present for data cube computation [2, 21,

29, 30], which are successfully implemented. In this paper, we use

multi-way array cubing algorithm for computation of aggregated

cube which are stored in sparse matrices. The multi-way

algorithm is effective when the products of the cardinalities of the

dimensions are moderate [30]. If A, B, C, and D are the

dimensions then total 24=16 aggregate cuboids are possible.

Taking ABCD as base cuboid figure 2 shows and aggregate at

dimension B that results in cuboid ACD used to compute AD,

which in turn can be used to compute A. This shared computation

allows multi-way to perform aggregations simultaneously on

multiple dimensions. These cuboids get physically stored in the

memory for aggregate queries.

Figure 2. Top-down Cuboids computation

1.2 Physical data warehouse design
Performance of the multidimensional databases depends

on the logical and physical design of these multidimensional

databases [3, 6, 7, 14, 17, 27, 30]. Physical level designs of the

data warehouse deals with the database partitioning materialized

views, indexing and clustering of records [3, 7, 22]. Indexing at

physical layer is used to improve the performance of logical layer

[27]. Data warehouse are read-only data for complex

multidimensional queries. Indexing on single attribute is not a

solution for indexing multidimensional data [14, 15, 22, 27, 30,

31]. Conventional indexing techniques use data structures for

indexing multidimensional data cubes, which consumes large

amount of storage space for storing indexes apart from data itself.

Some literature shows use of B-tree for indexing individual

attributes rather than single key attribute for indexing

multidimensional databases at physical layer [31]. Bit encoded

sparse structure, are used for multidimensional indexing [15]. In

Bit-encoded sparse structure, chunking of the multidimensional

array based data cube takes place. For each cell in a chunk, a

dimension index is encoded in bits for each dimension. Due to this

data cube get compressed [15]. Bitmap indexing is a kind of

indexing system in which a bit vector is associated with each

value of column on which indexing is done. Bitmaps are useful

for columns that have low cardinality [22], therefore, some

products follow a hybrid approach. In a hybrid approach, a B-tree

is used when the list of qualifying RIDs per entry are small,

otherwise a bit-mapped index is used. Dynamic bit-maps are also

used to handle high cardinality data and large range queries to

construct the bit-maps dynamically from vertical partitioned fact

table respectively [27]. High performance data warehousing

techniques use parallel algorithms for implementing parallel

indexing system to increase the performance of the analytical

processing systems. Parallel and scalable infrastructure for

multidimensional array based data cube is used for increasing the

performance of the system [14, 15]. These indexing systems are

not robust as distorted key values, noise and misspelled keys are

not indexed properly. Storing indexes along with data consumes

large memory.

Uncertainty in the data requires attention. Spelling

variants, misspellings, and transliteration differences are source of

uncertainty in data with in the databases. Conventional indexing

techniques fail to map the misspelled and destroyed key values

[13, 31]. Performances of these indexing methods are better for

lower dimensional datasets and for online transaction processing

systems. However, they could not provide adequate results in

online analytical processing systems. These data structures needed

space not less than the data itself [1, 4, 5, 7, 9, 12, 18, 19, 20, 23,

28]. Multidimensional database systems need an indexing system

that stores indexes in less space and takes lesser time to generate

multidimensional indexes. In database, individual indexes

generated for each record or cluster index is generated for a group

of records. Indexing is done on records using values of key

attributes [1, 9]. Indexes are also needed to be stored in secondary

storage devices. High performance string hash function is

proposed in which each character of text requires only an

exclusive-OR operation and an indexed memory read [25].

Hashing string type value and alphanumeric keys is solved by

using classes of string hash function [26]. Problem of mapping

misspelled words to memory was not solved using class of string

hash functions. B-tree index need four times more space than the

storage of corresponding database on which indexes are created.

Dynamic hashing techniques are developed by combining them

with the binary tree, which are better than static hashing. Their

performance is better than the separate chaining method and

memory requirement is also under control [23]. Hashing provides

fastest possible access for retrieving an arbitrary record given the

value of its hash field. However, collision management degrades

the overall performance [22]. Hash based indexing method is hard

to implement as maintaining large number of hash function for all

dimensions is not possible. Some improvements are done through

the use of compressed bitmap indexing of high dimensional data

[18]. Many design techniques use horizontal table partitioning,

materialized query table, and multidimensional clustering for fast

query processing [6]. DB2 physical design advisor uses horizontal

partitioning for distributing data on non-shared parallel machines

and multidimensional clustering for data cube construction [3, 7].

Data structures such as SR-trees, skeleton R-trees and skeleton

SR-trees are constructed by combining memory resident data

structure (segment trees) and disk oriented indexing structures (R-

trees) to provide data structure for multidimensional data sets.

This approach is beneficial for indexing multidimensional

databases and spatial data [19].

Clustering techniques in data mining are used to group

data with similar properties. These clustering techniques solve

nearest-neighbor queries. Data with similar properties get

collected around data center of different clusters. Uncertainty in

the data requires attention. Spelling variants, misspellings, and

transliteration differences are source of uncertainty in data within

the databases. Clustering of data values which are approximately

similar to each other is a solution for finding similar values. On

this basis, new method of approximation of similar strings is done.

Clustering techniques are applied on strings for grouping them

 ABCD

 ABC ABD ACD BCD

 AB AC AD BC BD CD

 A B C D

 ALL

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

101

together in files [13]. Different statistical and non-statistical

clustering techniques are also available. Probability based

statistical model for indexing, also called as density based

indexing (DBIN), use probability density method to drive indexes

over the data table. DBIN shows problem of numerical instability

while indexing databases with high cardinality attributes. But an

indexing system based on clustering technique is very useful in

solving the problem of uncertainty in large databases. In this

indexing system, search time reduces due to partitioning of the

database into small clusters [5].

In this paper, self-organizing net is used for indexing

data warehouses at physical level. According to theoretical and

empirical justifications, neural network based methods are better

than the statistical methods. Many self-organizing net like

MAXNET, ART1, ART2 and kohonen network are available

[24]. In this paper, self-organizing net describe by Yoh-Han Pao

in taken into consideration due to its less complex

implementation. It supports unsupervised learning based on

discovery of clusters [24]. This neural network works as ART1

but also shows features of kohonen. Data taken into consideration

consists of three dimensions and total six thousand five hundred

records. Self-organizing net is used for clustering data values that

have least Euclidean distance with weight values assigned to the

neurons. Index value assigned to the data value, is equal to the

index of the active neuron. In self-organizing net based indexing

method, no extra efforts are needed to solve the problem of

overlapped indexes. Indexes generated through this method use

optimal space for storage, as only final weight matrices after

training of neurons are stored for each dimension. Indexes are

regenerated using saved weights, in less time. Single self-

organizing net is used for indexing the data for all the dimensions.

While in hashing different or multiple hash functions may be

used. These indexes are used for the construction of MOLAP data

cube. Self-organizing net based indexing is very robust as

distorted key values also get indexed to the right class. Sparse

structures are used to store these data cubes.

Organization of the paper is as follows: Section 2

describes neural network based indexing method with example. In

Section 3, result of experiment is shown using precision-recall

graph, which shows the performance of self-organizing net.

Finally, in Section 4, we have given conclusion of the paper.

2. Self-Organizing Net for physical layer

design of Data warehouse

In multidimensional database, attributes are referred as

dimensions and records consist of values for each dimension [10].

Number of different values in a dimension is the cardinality of the

dimension. Construction of multidimensional data cube is always

better for fast data access in OLAP system. A cell in

multidimensional space represents a tuple, with the attributes or

dimensions values of the tuple identifying the location of the tuple

in the multidimensional space and the measure values represent

the content of the cell [13, 15, 23]. Indexing of the

multidimensional database is done by indexing each data value of

every dimension. Data values of each dimension have an index

number, which is the index of its position in the multidimensional

array taken for construction of the data cube. Data set taken in our

indexing process consists of export data set providing information

about the amount of sales of commodities to hundred countries in

last eleven years. Data set consists of three dimensions as

“Country_name” with cardinality 100, “Commodities” with

cardinality 101, “Year” with cardinality 11 and the fact value

attribute “Amount_of_Sales”. Total records are about 6437.

Sample of the fact table is shown in Table 1.

Table 1. Sample of data taken into consideration

(Source: website, www.dgft.delhi.nic.in)

In conventional indexing system for indexing on each

dimension, the dimension key values are used. Each key value of

the dimension is stored in data structure used by the indexing

system. In B-trees and their variants, key values are stored in the

leaf nodes that point the key values to their indexes in

multidimensional array [31]. Thus, for each dimension a separate

data structure is used for storing indexes, which consumes

separate memory. For example, to know the amount of sales of

beverages in China in the year 2001-2002, we need the index

number of “China”, “beverages” and year “2001-2002” of the

first, second and third dimension of multidimensional array based

data cube and access the fact value 127.46. In this paper, indexing

of multidimensional data cube is shown through neural network

techniques. Indexes for all dimension values are generated and

stored in sparse matrix. The sparse matrix defines data cube for

data set.

2.1. Our approach for multidimensional

database indexing

Indexing of the multidimensional database is done by indexing

each data values of each dimension. Each dimension of the data

cube will have size equal to the cardinality of the dimension. To

achieve this, each unique value of the dimension should have

unique index number on its dimensional axis. Value in the cell,

will directly be accessed by its position in multidimensional array,

will be calculated using indexes for the data values on the axis.

Indexes for data values of each dimension can be generated using

clustering technique applied separately on each dimension. The

similar values of each dimension are grouped together in a class

or cluster, with a cluster number assigned to it. This cluster

Country_Name Commodities Year Amount_of_Sales

China Pearls
1996-

1997
74.99

China
woven pile

fabrics

1997-

1998
3.82

Russia Pearls
1999-

2000
1748.54

Nepal Pearls
2000-

2001
50.17

China Beverages
2001-

2002
127.46

Nepal Beverages
2002-

2003
1093.38

Russia Beverages
2003-

2004
70.09

China
chemical

compounds

2005-

2006
2372.57

Nepal
chemical

compounds

2006-

2007
1744.87

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

102

number will be the index of all values of the cluster. The cluster

index number of a data value in a dimension will be its index on

dimensional axis belonging to that dimension. For example

clustering is done on the dimension “Country_name” and its data

value “china” is assigned to cluster having index 1. Then “china”

is having index 1 on dimension axis defined for dimension

“Country_name”. Similarly clustering is done on other dimension

data values of second dimension “Commodities” and data value

“PEARLS” is assigned to cluster with index number 3. Then

“PEARLS” is having index 3 on dimension axis define for this

dimension. Suppose the cluster index for “1996-1997” is 4 then its

index on dimension axis will be 4. The first tuple (“china”,

“PEARLS”, “1996-1997”, 74.96) will be represented in data cube

as a cell containing 74.96 having indexes (1,3,4) in three

dimensional array. System does not have a prior knowledge of

number of classes or clusters in which data will be classified.

There is a need of an algorithm which performs clustering

operation and gives indexes to each key value of the dimension

taken for indexing. In this paper clustering technique is applied

on data values of each dimension for grouping similar data values

together and generates a class index number for it.

2.2. Neural network based indexing of

multidimensional databases

While indexing a multidimensional data base, each dimension is

taken into the indexing process separately. Clustering is needed to

perform on the data values so that similar data values are grouped

together into different classes. Cardinality of the dimension is not

fixed. So, number of classes can not be known previously. Due to

unsupervised learning, clustering is best suited for indexing of

dimensional data values. Neural network architecture can be

employed for both supervised and unsupervised learning

paradigms. Type of neural network architecture used for

clustering of input patterns depends on the characteristic of given

data set. Looking at the problem of indexing multidimensional

data bases, the data set taken for clustering are the data values of

each dimension. Input patterns for the neural network are n-

dimensional feature vectors which describe each data value of a

dimension. Construction of input data is described later. Outputs

of the neural network are indexes of the classes in which all the

patterns are classified. Since the cardinality of the dimension is

not fixed, data in data warehouse are updated after a certain time

interval. Its size increases exponentially. New data values are

added to each dimension. In conventional indexing system no

extra efforts are required for adding new data values. So, new

system of indexing should have this facility. Clustering can be

performed using neural networks.

Input to the self-organizing net is feature vector which

define each value of a dimension. Output is the index of cluster to

which data values of the dimension belongs. The algorithm

followed by this network to make clusters of data values have

following steps.

1. This self-organizing net creates a node and assign

first pattern as weight of node.

2. Calculating Euclidean distances of all patterns with

weight assign to this newly created cluster. Pattern

belong to cluster will have at minimum Euclidean

distance from that cluster.

3. A threshold value is taken as vigilance parameter.

If square root of minimum Euclidean distance for a

pattern is less than and equal to threshold then

pattern will belong to cluster and its number will

be the index of key value defined by this pattern

and weights of this node get updated.

4. If square root of minimum Euclidean distance for a

pattern is more than threshold then a new cluster

node is created with pattern which does not belong

to earlier created clusters. Repeat steps 2 to 4.

5. Finally after training updated weights are saved for

a particular dimension.

This self-organizing net gives unique index of each key value in

the dimension so that indexes do not overlapped. In case a new

data value is added to the dimension then mapping of this data

value is done with only following the steps 2 through 4. If no

category exits, a new cluster is made for new data value, this

mechanism is beneficial while indexing data is data bases. The

weights saved for each dimensions will work both for data

accessing and adding new data values to the respective or new

clusters. This discovery of clusters based unsupervised net is well

suited for indexing data cube. In Kohonen’s network, any new

pattern that does not belong to the clusters already constructed is

still forced into one of them using the best match strategy, without

taking into account how good even the best match is. This way

overlapped data values in the same cluster will affect the quality

of indexing process [24]. This problem of stability of weights as

well the inability to accommodate patterns belonging to new data

values, can be solved using neural nets based on adaptive

resonance theory (ART). Our algorithm is based on the principle

of ART network, also, shows the feature of kohonen network. It

also preserves topology. Number of clusters generated equal to

the cardinality of the dimension. Input features vectors are

constructed for each dimensional data. This is the input to the self-

organizing map used for indexing each dimensional value.

2.3 Input feature vector construction

For the input to self-organizing net, input matrix is defined, which

consists of vectors of parameter values defined for each value of

the dimension. Values of the dimension are chosen for preparing

input parameters. Each character of the key value is assigned a

numeric value from the character reference table of the particular

dimension. These values are used to define parameter vector for

the key value. Character reference table of the dimension is

prepared using histogram of the frequency of occurrence of each

character in the values of dimension. The numeric value assign to

a particular character in the dimension character reference table

will be higher for the character with lowest frequency. Sample of

dimension character reference table for first, second and third

dimension are as shown in the following Tables:

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

103

Table 2 Dimension First Character Reference Table

Table 3 Dimension Second Character Reference Table

Table 4 Dimension Third Character Reference Table

The above tables are used to define the parameters of each key

value of the first, second and third dimension. Each value of

dimension is defined by the numeric values of each character of

key value taken from the dimension character reference table.

These values define a key value of the dimension, which are,

considered as parameters for the key value taken into

consideration. Length of the input vector is equal to the length of

longest key in that dimension. Sample input table of first

dimension is shown in the Table 5. Length of the input vector for

the first dimension is 16, which are according the length of

longest key value of the first dimensions. Similarly input tables of

other dimensions are defined for their values.

Table 5 Input Table For First Dimension

These parameters are available as a input to self-organizing net.

Giving input to the self-organizing net, training starts and weights

of the neighboring neurons of winning neuron gets updated for

each input. After completion of training and testing of self-

organizing net, final weights for each dimension are stored. These

weights will be used to calculate indices back at the time of

accessing the data. The index numbers of the active neurons for

each value of the dimensions are collected. These are the indices

of the values. All the values belonging to a cluster will have same

cluster number. Using the self-organizing net, for indexing each

value of the dimension, no collision between the index values

takes place, and the indexes generated during the training are in

sequence as the values in the dimension. The index number for

each value of the dimension will be considered while construction

of MOLAP cube. This will also be optimal for storage purpose.

2.4 Data cube construction using sparse

matrices
After scanning the fact table record-by-record and getting indexes

for each value of the tuple, fact values are inserted at the position

described by the index of each value of tuple. As

multidimensional data cubes are sparse, sparse matrices are used

to store index values of the nonzero cell entries. Defining a sparse

structure, which have three variables for storing indexes of three

dimensional values and the fourth variable for storing

corresponding values. One instance of sparse structure is used to

store one tuple. So, array of structure of size equal to the number

of records of fact table is defined. Scanning each tuple of fact

table and considering the value of each dimension to store its

measure value into the sparse structure along with the indexes.

Indexes of the dimensional values are generated using the weight

matrixes of the dimensions. The weight matrixes of each

dimension are stored and having final weight value of each node

of self-organizing net after the training is completed. To get index

of any value of dimension, an input vector is created using

numerical values of characters of each dimensional value from the

dimensional character reference table. Secondly Euclidean

distance of this vector is calculated from each node of self-

organizing net using stored weight matrix of that particular

dimension. The cluster index number generated, will be the index

of that dimensional value. Index value for each value of the tuple

is calculated and stored in the sparse structure along with it

measure value. This way whole fact table is stored into the array

of sparse structure. Sample of the data cube stored in the sparse

structure is shown in the figure 3.

Char Frequency Value

a 7776 0.01

i 4428 0.02

n 4332 0.03

s 3384 0.04

e 3032. 0.05

r 2381 0.06

….. ……. …..

…. …. ….

q 30 26

Char Frequency Value

a 12789 0.01

b 12515 0.02

s 11159 0.03

t 10110 0.04

r 9775 0.05

… ……. ……

….. ……. …..

j 21 0.26

Char Frequency Value

0 8768 0.01

9 5272 0.02

2 4677 0.03

1 2930 0.04

6 1173 0.05

3 588 0.06

8 587 0.07

7 584 0.08

5 583 0.09

4 582 0.1

x1 X2 ….. x13 x14 x15 X16 Value

0.01 0.24 ….. 0 0 0 0 afghanistan

0.01 0.07 ….. 0 0 0 0 albania

0.09 0.01 ….. 0 0 0 0 cape verde

0.11 0.10 ….. 0 0 0 0 philippines

0.08 0.03 ….. 0.12 0.15 0 0 united

kingdom

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

104

Figure 3 The data cube in sparse structure

This figure shows that in the data cube each value of the

dimensions have an index number along the three dimensional

axes of the cube corresponding to the tuple of the fact table. Each

row of the data cube is one instance of the sparse structure

containing one tuple. The total instances are equal in the number

as the total number of records in the fact table. In the

multidimensional array based data cube each instance of the

sparse data cube represents the one cell containing value of tuple.

The purpose of taking each tuple in one instance of sparse

structure is concerned with memory management as number of

tuple increases then it will help in partitioning of the fact table

stored in the sparse structures. The above data cube contains all

the dimensions. High storage capacity is required to store the

whole data cube. Decision support systems frequently pre-

compute many aggregates to improve the response time of

aggregation queries. Data cube can computes aggregates along all

possible combinations of dimensions called group-bys. Fast data

accessing system need data cube to be stored in from of group-

bys. 2N-1 aggregates calculations are needed for N-dimensional

data cube. In above case there are three dimensions and one

measure value so 23=8 group-bys are calculated as

{Country_Name, Commodities, Year}, {Country_Name,

Commodities}, {Country_Name, Year}, {Commodities, Year},

{Country_Name},{Commodities}, {Year} and ALL. Collection

of all the group-bys is called data cube. There are two ways to

from group-bys formally before construction of sparse cube. The

fact table can be partitioned and all the view of the fact dimension

can be stored into sparse structures. This method is very costly as

memory requirement is high. Secondly sparse data cube formed

from original fact table can be use for aggregation along

dimensions and group-bys formed will be stored in the sparse

structure again [14,15]. Any group-by will be computed by

selecting the smallest of the previously computed group-bys as its

parent. In above data cube the cardinalities of the dimensions are

100,101 and 11 form Country_Name , Commodities and Year

respectively. The original data cube will be used for calculating

group-bys {Country_Name, Commodities}, {Country_Name,

Year}, and {Commodities, Year} from these group-bys the group-

bys {Country_Name}, {Commodities} and {Year} are computed

using {Country_Name,Year} and {Commodities, Year} as they

are smallest parents for these aggregates or group-bys. Similarly

supper aggregate ALL is calculated from parent group-by {Year}.

These group-bys are stored in sparse structures and used for

aggregation queries which does not need to access data from

original data cube this make it fast in accessing the data. Storing

these group-bys also require less memory.

3. EXPERIMENT AND RESULTS
Three-dimensional dataset taken for experiment is a fact

table with dimensionality 3 with one fact value attribute.

Cardinality of the three dimensions is 100, 101, and 11

respectively. Number of records is 6437. For this experiment,

program is implemented using matlab6.0. Self-organizing net

consists of variable number of neurons for each dimension.

Single self-organizing net is used for each dimension. The

indexes of the active neuron generated. These indices of

active neurons are the cluster numbers for each value in a

dimension. Final weights for neurons are stored for each

dimension. These weights are used to regenerate the indices

of data values at the time of testing, data accessing and for

inserting new values. For the experimental verification

cluster files for each dimension contain all the data values

along with the index number generated for the value in the

dimension. The index number of the data value will be the

index of that value in the multidimensional array based data

cube for the dimension to which it belongs. For the training

of the self-organizing net for each dimension total 6437 input

patterns are taken while testing 1713 input patterns are taken

with distorted data values. After training the updated weights

for the particular dimension are saved. For the testing of the

classifier the test data set with distorted data values of the

particular dimension is taken for input to the self-organizing

net with the weight matrix which is saved for that dimension.

As a result most of the distorted data values are correctly

recognized and mapped to their respective clusters.

For performance analysis of the self-organizing neural

net a matching matrix is constructed to represent the result of

the test. This matching matrix is between the actual and

predicted classes also called n-dimension confusion matrix

[8, 10, 11]. In this matrix the diagonal elements consists of

truly positive and truly negative values. The row elements

except the diagonal element for each class are the false

positive values for a particular class. The column elements

except the diagonal element for each class are the false

negative values for a particular class [10, 11]. From this n-

dimension matching matrix, binary confusion matrices are

constructed for each class with respect to other classes. So,

there will be N binary confusion matrices for N classes. The

entries of binary confusion matrix for a class is done by

summing up of false positive, false negative, and true

negative values with reference to this class.

After training for the data values of first dimension, test

data values with distorted data values is given as input to the

self-organizing net. The results of the classification of data

into classes are compared using matching matrix and

construction of binary confusion matrix for each class.

Figure 4 show the sample of matching matrix and binary

confusion matrix for first class.

Country_Names Commodities Year value

 1 1 1 8579.65

 1 1 2 0.0

 1 1 3 5.07

 1 1 4 7.19

 1 1 5 12.17

 1 1 6 15.31

 1 2 5 7724.16

 1 2 6 2580.03

 1 2 7 2670.2

 1 2 8 11321.22

 1 2 9 571.42

 1 2 10 6804.55

 1 3 8 19496.47

 1 3 10 36597.24

 1 3 11 18046.37

 1 3 1 12953.64

 1 3 2 13830.43

 1 3 3 300.910000

 2 1 7 29.750000

 2 1 8 50.170000

 2 1 9 153.640000

 2 1 10 306.280000

 2 1 11 90.740000

 2 1 1 196.570000

 2 2 11 2663.100000

 2 4 1 9965.500000

 2 4 2 200.690000

 2 4 3 21093.410000

 2 4 4 20944.480000

 2 4 5 11267.640000

 2 3 4 301.620000

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

105

 Figure 4(a). Matching matrix for 100 classes

 Accuracy= (sum of diagonal elements/total elements of matrix) x

100 = 92.3977.

 Actual Classes

Predictive

Classes

Column Total P=9 N=1572

TP/P=Recall=1 Precision=TP/(TP+FP)=0.9

F-score=Precision x Recall=0.9

Figure 4(b) Binary Confusion matrix for single class

afghanistan

In the above figure complete matching matrix shows the

distribution of total 1713 patterns among the 100 classes. For

example 10 patterns of afghanistan then matrix show 9 are

correctly classified while 1 pattern is misclassified as ukraine.

Form the matrix performance of the classifier for each class can

be calculated and represented in a binary confusion matrix. For

example binary confusion matrix is shown for first class

afghanistan and also value of the performance parameters is

calculated for this class. Now precision and recall values of all the

classes are calculated and graph between these values is plotted as

shown in the figure 5.

Figure 5 Precision-Recall Graph

The graph shows that large numbers of data values are

nicely classified as many points in the graph have high precision

and recall values. If the values of the precision are high for

constant value of recall and vise-versa then the Precision-Recall

graph is of best quality. The above graph shows that a break -even

point at (1,1) this also show that the classifier performance is good

for the test data. Average F-score for all the classes is above 80%.

This also justifies the higher performance of classifier. In

conventional indexing techniques every key value is mapped to a

specific point in space, while in self-organizing net based data

base indexing system, every key value is mapped to a region in

the space. This region is a class to which the key values of similar

type belong. The class index number is the index for all data key

values belong to that class. In self-organizing map based indexing

method no extra efforts are needed to solve the problem of

overlapped indices, as there is least possibility of collisions

because every key value belong to independent class so this way it

gives better response than hash technique. In hashing collisions

occurs very frequently more than one hash function is used for

indexing a key to avoid collision. Also distorted key value cannot

be mapped using hashing or B-trees. In our method of indexing

single self-organizing map is used for indexing all the data values

of the dimensions. Self-organizing maps show robustness in the

indexing as they map the distorted keys to the right class. This is

not possible with other indexing systems.

Further work is possible on the robustness of this

system of indexing as in some cases if the value of the lost

character, is maximum in the character reference table then

generating the right index of that key value is not possible. This

limitation needs to be further studied. Indexes generated through

this method were found to use optimal space for storage, as only

final weight matrices after training of neurons are stored. Space to

store the final weight is less than the storage needed to store hash

tables. Multidimensional data get compressed because self-

organizing map transforms an incoming n-dimensional input data

into one or two dimension discrete map. Regenerating the indexes

at the time of data cube construction at conceptual layer is quite

easy as compare to hashing. This system will perform better than

hash based indexing system with respect to space and robustness.

4. CONCLUSION
Performance of data warehouse depends on its physical

design. Indexing of data cubes plays major role in performance

enhancement. In our work we support a neural network based

indexing technique for indexing the multidimensional data cube.

Self-organizing net can be used for data indexing in the

multidimensional database that is better technique for indexing all

the dimension values as compared to the traditional methods like

Bit-map based indexing. As in data warehouses queries are based

on read only system, no frequent updates are required in data

warehouses. In conventional indexing techniques every key value

is mapped to a specific point in space, while in self-organizing net

based database indexing system, every key value is mapped to a

region in space. This region is a class to which the key values of

similar type belong. The class index number is the index for all

data key values of the class. In self-organizing net based indexing

method, no extra efforts are needed to solve the problem of

overlapped indexes. Indexes generated through this method used

optimal space for storage, as only final weight matrices after

training of neurons are stored. Self-organizing net based indexing

is very robust as distorted key values get indexed to right classes.

It will perform well on a single or multi-computer system.

5. REFERENCES
[1] Abraham Silberschatz, Henry F. Korth, and Sudarshan

(2002). Database System Concepts (pp 445-489). 4th

Edition, McGraw Hill.

TP=9 FP=1

FN=0 TN=1571

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

106

[2] Agarwal Sameet, Agarwal Rakesh, Deshpande Prasad

M. Gupta Ashish, Naughton Jeffrey F., Ramakrishnan

Raghu, Sarawagi, Suntia (1996). On the Computation

of multidimensional Aggregates, Proc. 22nd VLDB

Conf. Mumbai, India,1996.

[3] Agrawal, S., Narasayya V., and Yang, B (2004).

Integrating vertical and horizontal partitioning into

automated physical database design. In Proc. ACM

SIGMOD international Conference on Management of

Data (Paris, France, June 13 - 18, 2004). SIGMOD '04.

ACM, New York, NY, 359-370.

[4] Almasi S. George, Lawreence Douglas, and Rushmeier

Edith (2001) Scalable Parallel algorithm for self-

organizing maps with applications to sparse data-

mining problems, United States Patent, Patent No. US

6,260,036 B1 July 10, 2001.

[5] Bennett, K. P., Fayyad, U., and Geiger, D (1999).

Density-based indexing for approximate nearest-

neighbor queries, In Proceedings of the Fifth ACM

SIGKDD international Conference on Knowledge

Discovery and Data Mining (San Diego, California,

United States, August 15 - 18, 1999). KDD '99. ACM,

New York, NY, 233-243.

[6] Dainel C. Zilio, Jun Rao San Lightstone, Guy Lohman,

Adam Strom, Christian Garcia-Arellano, and Scott

Fadden (2004), Recommending Materialized views and

indexes with IBM’s DB2 Design Advisor, International

Conference on Autonomic Computing 2004.

[7] Daniel C. Zilio, Jun Rao, San Lightstone, Guy Lohman,

Adam Strom, Christian Garcia-Arellano, and Scott

Fadden (2004). DB2 Design Advisor :Integrated

Automatic Physical Database Design, Proc. 30th

VLDB Conf. Toronto, Canada, 2004, pp. 1087-1097.

[8] Davis, J. and Goadrich, M.(2006). The relationship

between Precision-Recall and ROC curves. In

Proceedings of the 23rd international Conference on

Machine Learning, (Pittsburgh, Pennsylvania, June 25 -

29, 2006), ICML '06, vol. 148. ACM, New York, NY,

233-240.

DOI=http://doi.acm.org/10.1145/1143844.1143874

[9] Elmasri Ramez, Somayajulu V. L. N. Durvansula,

Navathe B. Shamkant, and Gupta K. Shyam (2007).

Fundamentals of database systems(pp 297-356). 3rd

edition: Pearson Education.

[10] Fawcett, T. (2006). An introduction to ROC analysis.

Pattern Recogn. Lett. 27, 8 (Jun. 2006), 861-874. DOI=

http://dx.doi.org/10.1016/j.patrec.2005.10.010

[11] Fawcett, T. (2003). ROC graphs: Notes and practical

considerations for data mining researchers, Tech report

HPL-2003-4. HP Laboratories, Palo Alto, CA, USA.

Available:http://www.purl.org/net/tfawcett/papers/HPL

-2003-4.pdf.

[12] Freeston, M(1995). A general solution of the n-

dimensional B-tree problem, In Proceedings of the

1995 ACM SIGMOD international Conference on

Management of Data (San Jose, California, United

States, May 22 - 25, 1995). M. Carey and D. Schneider,

Eds. SIGMOD '95. ACM, New York, NY, 80-91.

[13] French J.C., Powell, A. L., and Schulman, E.(1997).

Applications of approximate word matching in

information retieval. In Proceeding of the sixth

international conference on information and knowledge

Management, Las Vegas, Nevada, US, November 10-

14,1997, CIKM'97. ACM. New York, NY, 9-15.

[14] Goil, S. and Choudhary, A. 1997. High Performance

OLAP and Data Mining on Parallel Computers. Data

Min. Knowl. Discov. 1, 4 (Dec. 1997), 391-417. DOI=

http://dx.doi.org/10.1023/A:1009777418785

[15] Goil Sanjay, Choudhary Alok(1996). Design and

Implementation of a scalable parallel system for

multidimensional analysis and OLAP, 13th Int’l

symposium on parallel and distributed processing.

[16] Gray J., Reuter A., Layman A., and Pirahesh H.(1996).

Data cube: A relational aggregation operator

generalizing group-by, cross-tabs, and sub-totals. In

Proc. of the 12th Int’l Conference on Data Engineering,

pp 152-159.

[17] Harinarayan, V., Rajaraman, A., and Ullman, J. D.

(1996). Implementing data cubes efficiently. In

Proceedings of the 1996 ACM SIGMOD international

Conference on Management of Data (Montreal,

Quebec, Canada, June 04 - 06, 1996). SIGMOD'96.

ACM, NewYork, NY, 205216.

DOI=http://doi.acm.org/10.1145/233269.2333333

[18] Kesheng Wu, Ekow Otoo, and Arie Shoshani(2004). On

the performace of bitmap indices for high cardinality

attributes, Proceedings of the 30th VLDB Conf.

Toronto, Canada, 2004 pp. 24-35.

[19] Kolovson, C. P. and Stonebraker, M. 1991. Segment

indexes: dynamic indexing techniques for multi-

dimensional interval data. SIGMOD Rec. 20, 2 (Apr.

1991), 138-147. DOI=

http://doi.acm.org/10.1145/119995.115807

[20] Lanka, S. and Mays, E. 1991. Fully persistent B+-trees.

SIGMOD Rec. 20, 2 (Apr. 1991), 426-435. DOI=

http://doi.acm.org/10.1145/119995.115861

[21] Li Jianzhong, Srivastava Jaideep(2002), Efficient

Aggregation Algorithms for Compressed Data

Warehouses, IEEE Trans. Knowledge and data

engineering, Vol. 14. No.3, pp 515-529.

[22] Malinowski, E. and Zimnyi, E.(2008). Advanced Data

Warehouse Design: from Conventional to Spatial and

Temporal Applications (Data-Centric Systems and

Applications).1st ed.2008., pp 51-55,Springer

Publishing Company, ISBN: 978-3-540-74404-7.

[23] Md. Mehedi Masud, Gopal Chandra Das, Md. Anisur

Rahman, and Arunashis Ghose(2006). A Hasing

Technique Using Separate Binary Tree", Data Science

Journal, Volume 5, 19, October 2006, pp 143-161.

[24] Pao Y.H.(1989). Adaptive Pattern Recognition and

Neural Networks,Addison-Wesley, Reading, MA,

1989.

[25] Pearson, P. K. 1990. Fast hashing of variable-length text

strings. Commun. ACM 33, 6 (Jun. 1990), 677-680.

DOI= http://doi.acm.org/10.1145/78973.78978

http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1023/A:1009777418785
http://doi.acm.org/10.1145/119995.115807
http://doi.acm.org/10.1145/119995.115861
http://doi.acm.org/10.1145/78973.78978

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 3

107

[26] Ramakrisha M.V., Justin, Zobel (1997).,"Performance

in Practice of String Hashing Functions", Proceedings

of the fifth International Conference on Database

Systems for Advanced Applications, Melbourane,

Australia, April 1-4, 1997.

[27] Sarawagi S.(1997). Indexing OLAP data, IEEE Data

Engineering Bulletin, March.

[28] Seeger, B. and Larson, P. 1991. Multi-disk B-trees.

SIGMOD Rec. 20, 2 (Apr. 1991), 436-445. DOI=

http://doi.acm.org/10.1145/119995.115862

[29] Xin Dong, Han Jiawei, Li Xiaolei, Shao Zheng, and

Wah. Benjamin W.(2007). Computing Iceberg Cubes

by Top-Down and Bottom-Up Integration : The

StarCubing Approach, IEEE Trans. Knowledge and

data engineering, Vol. 19. No.1, pp 111-126.

[30] Zhao Y., Deshpande P., and Naughton J.(1997). An

array-based algorithm for simultaneous multi-

dimensional aggregates. In Proc. ACM-SIGMOD

International Conferences on Management of Data, pp

159-170.

[31] Zhao Yihong, Tufte Kristin, Naughton F Jeffrey

(1996), On the Performance of an Array-based ADT for

OLAP workloads, Technical Report CS-TR-96-1313,

University of Wisconsin-Madison, CS Department,

May, 1996.

