
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

90

A Comparative Study of using Object oriented
approach and Aspect oriented approach for the

Evolution of Legacy System

Dr S.A.M .Rizvi, Jamia Millia Islamia, New Delhi

Zeba Khanam, PhD Scholar, Jamia Milia Islamia, New Delhi

Abstract
Legacy systems are vital to an organization, and

sometimes form the backbone of an organization,

yet their maintenance and evolution had been an

area of research for a long time. Besides being

costly to maintain, legacy systems often lag

behind changes in the businesses they support.

The challenge in today’s environment is to

develop a methodology to migrate older systems

to newer, more cost effective client-server

distributed processing platforms that support

standards-based modular architectures. One

approach is to employ a “wrapper” of code that

surrounds the existing legacy code, turning it

into an object. This could be stated as an object

oriented approach to legacy systems. However,

there are many other paradigms that a legacy

system might adopt. Aspect-oriented technology

is another emerging programming paradigm that

is receiving considerable attention from research

and practitioner communities alike. Nowadays

much of the work is carried on, on developing

different methodologies to enable aspect oriented

programming to be applied to legacy systems. In

this paper, we try to analyze the impact of object

oriented technology and aspect oriented

technology on legacy systems and the

environment that is required to implement the

two paradigms. The advantages and

disadvantages of both the paradigms have been

explored, and a comparative study of both the

paradigms is done and analyzed in the light of

legacy systems.

Introduction
Many existing systems are expensive to maintain

because their priority mainframe-based

technologies are no longer current and do not

adequately support their users’ processing needs.

Downsizing host-based applications to smaller,

less expensive systems may provide cost savings

on several levels and lead to increased end-user

efficiency, due in part to the readily available

desktop computing power that may have already

been purchased. Even some client-server

systems developed in recent years have reached a

point where modernization may be necessitated

because rapid-paced technological advancements

have rendered their hardware obsolete.

Migration of such legacy systems to standards-

based open system environments is a formidable

challenge. The concept presented here is

intended to provide an approach to meet the

challenge of legacy migration based on new and

exciting technologies [4]. This paper begins with

the discussion of both the paradigms, then it

emphasizes upon the applicability area of both

the paradigms in legacy system .The next section

deals with a comparative analysis of both the

paradigm in context with their applications to the

legacy system.

 Object-Oriented Approach to Legacy

System Migration

This section presents a discussion of various

ways in which object oriented approach can

assist in evolution of legacy system. One of the

approaches is based on the Object Management

Group’s (OMG) Common Object Request

Broker Architecture (CORBA) for migration of

legacy systems. The OMG is a consortium

established to remote industry guidelines and

object management specifications in order o

provide a common framework for the

development of distributed applications.

However, as with any evolving technology, there

are competing standards. Microsoft’s Object

Linking and Embedding (OLE), and the pen

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

91

Software Foundation (OSF) Distributed

Computing Environment DCE) are similar

alternative approaches to legacy migration. [6]

Systems built upon the principles of an object-

oriented architecture maximize portability,

reusability, and interoperability of software,

resulting in a true open system solution.

By using the encapsulation or “wrapper”

approach, irreplaceable system applications can

be transformed into object-oriented components

for a modular architecture suitable to a

heterogeneous, distributed processing

environment. One product which can facilitate

the object-oriented approach is the Universal

Network Architecture Services product (UNAS)

developed by TRW. The fully executable

framework generated by UNAS changes the way

distributed systems are built. In addition, UNAS

serves as middleware, a layer of software that

sits between the operating system and the

application, in effect hiding the complexities of

operating systems, hardware platforms, and

network protocols.

The OMG describes an object-oriented

architecture as being developed using the

following elements: the Object Request Broker

(ORB), Common Object Services (COS),

Common Facilities, and Application Objects. A

noticeable industry trend appears to support

implementation of OMG standards as a

mechanism to achieve a truly object oriented

distributed system. This approach presents an

implementation that can be consistently applied

to revamping the architectures of legacy systems

and can be used as a blueprint for the

development of new distributed systems. Using a

modular, component-based architecture should

also result in reduced software development and

maintenance life cycles and related costs.

A major drawback of this approach is that a

specific wrapped legacy code may not be

reusable in systems of similar functionality

because it was not originally created with reuse

in mind. The ease with which objects can be

generated may result in uncontrollable

application growth, unnecessary complexity, and

sloppy development.

The next section deals with migrating Legacy

Systems to the Web that is one of the main

concerns of enterprises looking for more flexible

distributed application environments.

Extending UML for the migration of

Legacy Systems to the Web

This migration process comprises the

construction of a Web Interface that needs to

interact in an arbitrary complex manner with pre-

existent business logic modules, which must pay

off prior investments. These Web Engineering

concerns have been already addressed with

UML,

Modeling the integration and interference of

design of business logic and Web Interface

design is the key factor for getting successful

Web Applications. Some proposals [14] exist for

the definition of interface and integration with

logic that are device and technology

independent. Also, business logic concerns have

already been partially addressed in a number of

Advanced Software Production Environments

[13] that use Model Based Code Generation

techniques, many of them based on UML-

compliant [15] models. One more approach

known as OO-H (Object-Oriented Hypermedia)

Method [9], aims at extending such UML-

Compliant environments with two new features:

navigation in heterogeneous information spaces

and connexion with pre-existent logic modules.

Although the aspects such as service

composition, asynchronous execution of

services, security concerns or very sophisticated

front-ends have not been taken into account, still

the new capabilities will be added as the number

and type of modeled applications increases.

Hence, we have briefed up certain issues related

to the migration of legacy system to object

oriented environment, their advantages and

drawbacks. The next section deals with the

impact of Aspect oriented programming on the

evolution of legacy systems.

Aspectual Analysis of Legacy Systems

Aspect-oriented programming (AOP) is a

programming paradigm that increases

modularity by allowing the separation of

cross-cutting concerns. AOP states that

programming languages based on any single

abstraction framework, procedures, constraints,

whatever -are ultimately inadequate for many

complex systems[7] In AOP, the different

aspects of a system behavior are each

programmed in their most natural form, and

http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Modularity_(programming)
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Cross-cutting_concern

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

92

then these separate programs are woven together

to produce executable code.

For example, code that implements a particular

security policy would have to be distributed

across a set of classes and methods that are

responsible for enforcing the policy. However,

with aspect-oriented technology, the code

implementing the security policy could be

factored out from all the classes to an aspect [8]

Logging is the archetypal example of a

crosscutting concern because a logging strategy

necessarily affects every single logged part of the

system. Logging thereby crosscuts all \logged

classes and methods.

AspectJ , that was developed for java has a

number of such expressions and encapsulates

them in a special class, as aspects. Soon even

procedural languages like C and COBOL also

started getting their aspect languages like Aspect

C, Aspect C++, Aspicere, Weave C, C4, TinyC,

etc.

Approach to Dynamic Software

Evolution

AOSD also supports dynamic evolution of

legacy systems. Peter Ebraert has proposed a

solution that allows systems to remain active

while they are evolving [10]. He has presented a

preliminary reflective framework that allows

dynamic evolution of separate concerns. The

system evolves in 2 steps. In a first step, the

application’s cross-cutting concerns should be

removed, so that it is well modularized. Aspect

mining and static refactoring techniques were

used to detect and separate the cross-cutting

concerns respectively. In a second step, the well-

modularized application should be controlled at

the metalevel by a monitor with full reflective

capabilities. Such a monitor merged the ideas of

EAOP (Event-based Aspect-Oriented

Programming) and partial behavioral reflection

with the dynamic capabilities of the Smalltalk

language.

Impact of AOP+LMP on legacy software

Bram Adams has proposed in his work a mix of

aspect-oriented programming (AOP) and logic

meta-programming (LMP) to tackle some

concerns of/in legacy environments [11]. The

work was carried out in the context of the two

major languages in legacy environments -C and

COBOL. Tracing in C and business rule mining

in COBOL was done smoothly, using LMP as a

point cut mechanism in AOP. The Y2K-bug is

probably the best-known example of problems

related to legacy systems. It is important to

understand that at the heart of this was not a lack

of technology or maturity thereof, but rather the

understandable failure to recognize that code

written as early as the sixties would still be

around some forty years later. The problem

statement certainly presents a crosscutting

concern: whenever a date is accessed in some

way, make sure the year is extended. Knowing

which items are dates and which are not requires

human expertise. The nice thing about LMP is

that we could have used it to encode this.

 Comparative Analysis of AOP and OOPs

The impact of both the approaches has been

highlighted in the above sections in some of the

areas related to the maintenance of legacy

systems. Object-oriented technology provides

powerful tools, such as encapsulation or multiple

inheritances of objects, which enable

programmers to construct more functionality

with less code than previous methods. More

importantly, it can minimize the impact of

change by combining data and the functions

associated with it into a single package — the

object — thus reducing the amount of time and

effort necessary to produce an application and

also increases reuse of software [2]. The

approach developed by OMG was discussed.

The basis for the approach is that existing;

proven software is retained, thus eliminating the

costs associated with new development. Using a

modular, component-based architecture should

also result in reduced software development and

maintenance life cycles and related costs.

An Object-oriented framework has also been

developed to increase the availability of

integrated applications without fully replicating

the application environment such as the

application platforms, programs, and data [12].

Some legacy applications are periodically

suspended for data backups, end of period

processing, system and software upgrades,

and/or maintenance. These scheduled

suspensions are usually not acceptable for high

quality service-oriented applications. An object-

oriented cost effective replication technique is

used for increasing the availability of networked

http://en.wikipedia.org/wiki/Data_logging
http://en.wikipedia.org/wiki/AspectJ

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

93

application integration during a scheduled

unavailability of one or more involved

applications [12].

While many standard object-oriented

languages do a good job of clearly capturing

the behavior of objects, they do a less good

job of capturing structural and behavioral

invariants, such as object gets a pop message,

send this other object a refresh message. Many

linguistic mechanisms have been developed to

deal with special cases of this problem (i.e.

before/after methods), but a great deal of the

complexity in real world code still appears to

come from cases where the language fails to

provide adequate support for a secondary, but

still important, aspect of a system.

Aspect Oriented Programming (AOP), an

emerging programming paradigm, has been

identified as an important technique to aid in re-

engineering these systems, because it

modularizes crosscutting concerns without

actually modifying the original source code

(“obliviousness”) [1].

Everything that AOP does could also be done

without it by just adding more code. AOP just

saves writing this code. Assume you have a

graphical class with many "set()" methods.

After each set method, the data of the graphics

changed, thus the graphics changed and thus the

graphics need to be updated on screen. Assume

to repaint the graphics "Display.update ()"

should be called. The classical approach is to

solve this by adding more code. If there are few

set-methods, that is not a problem. But if there

are many, then it's getting real painful to add

this everywhere. No need to update many

methods; no need to make sure to add this code

on a new set-method. Only a pointcut is needed.

In addition, refactorings are instrumental for the

migration of legacy OO systems to use AOP [5].

Research shows that CCCs represent an

important evolution problem in legacy systems,

especially if one takes the scale of these systems

into account (millions of lines of code). AOP can

also be used in the dynamic analysis of the

legacy systems that no other paradigm can assist

[2].

However, this example also shows one of the

big downsides of AOP. AOP is actually doing

something that many programmers consider an

"Anti-Pattern". The exact pattern is called

"Action at a distance”. Action at a distance is an

anti-pattern (a recognized common error) in

which behavior in one part of a program varies

wildly based on difficult or impossible to

identify operations in another part of the

program.

As with all immature technologies, widespread

adoption of AOP is hindered by a lack of tool

support, and widespread education. Some argue

that slowing down is appropriate due to AOP's

inherent ability to create unpredictable and

widespread errors in a system. Implementation

issues of some AOP languages mean that

something as simple as renaming a function can

lead to an aspect no longer being applied leading

to negative side effects.

Conclusion

Analyzing the facts that had been covered in the

earlier sections, it can be concluded that AOP

does not replace OOP in the maintenance of

legacy systems but adds certain decomposition

features that address the so-called tyranny of the

dominant composition (or crosscutting

concerns). The ideas and practices of OOP stay

relevant. Having a good object design will

probably make it easier to extend it with

aspects. Although this should always be taken

into consideration that the legacy systems

should not necessarily include AOP, as it may

result in unnecessary code complexity and the

programmers might have to face the anti-pattern

problem. Therefore AOP should not be seen as

a replacement of OOP, but as an approach that

makes your code more clean, loosely-coupled

and focused on the business logic.

References:

[1] Bram Adams, “Aspect Orientation in the

Procedural Context of C”, 2006

[2] Bram Adams, Kris De Schutter , Andy

Zaidman , Serge Demeyer , Herman Tromp,

Wolfgang De Meuter , “Using Aspect

Orientation in Legacy Environments for Reverse

Engineering using Dynamic Analysis - An

Industrial Experience Report”,2008

[3] Fatima Beltagui, “Challenges of Aspect-

oriented Technology, Features and Aspects:

Exploring feature-oriented and aspect-oriented

programming interactions”, 2003

http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Action_at_a_distance_(computer_science)

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

94

[4] Gail Cochrane,” An Object-Oriented

Approach to Legacy System Migration”, 1996

[5] Jan Hannemann, “Aspect-Oriented

Refactoring: Classification and Challenges”,

2006

[6] John Wiley and Sons, “The Common Object

Request Broker: Architecture and Specification”,

Revision 2.0, Object Management Group, 1995

[7] John Irwin, Gregor Kickzales, John Lamping,

Jean, Cristina Videiralopes, Chris Maeda“Aspect

Oriented Programming”, 2000

[8] James M. Bieman, Roger T. Alexander,”

Challenges of Aspect-oriented Technology, 2004

[9] Jaime Gómez, Cristina Cachero, and Antonio

Párraga, “Extending UML for the migration of

Legacy Systems to the Web”, Spain, 2002

[10] Peter Ebraert and Tom Tourwe, “A

Reflective Approach to Dynamic Software

Evolution”, 2004

[11] Kris De Schutter, Bram Adams, “Face-off:

AOP+LMP vs. legacy software”, 2007

[12] Nader Mohamed and Jameela Al-Jaroodi

and, “An Object-Oriented Approach for High

Availability of Applications Integration”, United

Arab Emirates University, 2007

[13] R. Bell, “Code Generation from Object

Models”, Embedded Systems Programming”,

1998

.

