
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

37

Advanced Algorithm for Detection and Prevention of

Cooperative Black and Gray Hole Attacks in Mobile Ad Hoc

Networks

Shalini Jain

Maharaja Surajmal Institute Of
Technology

(Affiliated to Guru Gobind Singh
Indraprastha University)

Department Of Information
Technology

New Delhi, India

Mohit Jain

Maharaja Surajmal Institute Of
Technology

(Affiliated to Guru Gobind Singh
Indraprastha University)

Department Of Information
Technology

New Delhi, India

Himanshu Kandwal

Maharaja Surajmal Institute Of
Technology

(Affiliated to Guru Gobind Singh
Indraprastha University)

Department Of Computer
Science

New Delhi, India

ABSTRACT

In this paper, we propose an algorithm to detect a chain of

cooperative malicious node in ad-hoc network that disrupts

transmission of data by feeding wrong routing information along

with the detection algorithm. We also propose a mechanism to

detect and remove the black and gray hole attacks. Our technique

is based on sending data in terms of equal but small sized blocks

instead of sending whole of data in one continuous stream. The

flow of message is monitored independently at the neighborhood

of both source and destination. The result of monitoring is

gathered by a backbone network of trusted nodes. Our algorithm

takes O(n) time on average to find the chain of malicious nodes

which is better than earlier O(n2) time bound for detecting a single

black hole network.

Categories and Subject Descriptors

C.2.1 [Networks]: Mobile Ad Hoc Networks – Attacks, Security

RES-290

General Terms

Algorithms, Performance, Security.

Keywords

Packet forwarding misbehavior, Mobile ad-hoc network, Gray

hole attack, Black hole attack.

1. INTRODUCTION
 Mobile ad hoc networks are highly susceptible to routing attacks

because of their dynamic topology and lack of any infrastructure.

Two of the major routing attacks are black hole

and gray hole attacks. In a black hole attack, the malicious node

(referred to as black hole) replies to every routing request saying

that it has a route to the given destination. . So, unsuspecting

nodes start sending data to the destination through the black hole.

This way a black hole diverts most of the traffic in the network to

itself, and later dumps it. A gray hole attack is a variation of the

black hole attack, where the malicious node is not initially

malicious, it turns malicious sometime later. This anomalous

behavior of malicious nodes prevents a trust based security

solution from detecting them.

 In this paper we tackled two types of routing attacks namely

Gray hole attack and Black hole attack which exhibits packet

forwarding misbehavior. In a black hole attack malicious node

(called black hole) replies to every route request by falsely

claiming that it has a fresh enough route to the destination. In this

way all the traffic of the network are redirected to that malicious

node which then dumps them all. A gray hole attack is a variation

of black hole attack, where an adversary first behave as an honest

node during the route discovery process, and then silently drops

some or all of the data packets sent to it for further forwarding

even when no congestion occurs. Detection of gray hole attack is

harder because nodes can drop packets partially not only due to its

malicious nature but also due to overload, congestion or selfish

nature. A selfish node is unwilling to spend its battery life, CPU

cycles or available network bandwidth to forward packets not of

direct interest to it, even though it expects others to forward

packets on its behalf.

 In this paper we present a mechanism capable of detecting and

removing the malicious nodes launching these two types of

attacks. Our approach consists of an algorithm which works as

follows. Instead of sending the total data traffic at a time we

divide the total traffic into some small sized blocks. So that

malicious nodes can be detected and removed in between the

transmission of two such blocks by ensuring an end-to-end

checking. Source node sends a prelude message to the destination

node before start of the sending any block to alert it about the

incoming data block. Flow of the traffic is monitored by the

neighbors of the each node in the route. After the end of the

transmission destination node sends an acknowledgement via a

postlude message containing the no of data packets received by

destination node.

 Source node uses this information to check whether the data loss

during transmission is within the tolerable range, if not then the

source node initiate the process of detecting and removing

malicious node by aggregating the response from the monitoring

nodes and the network.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

38

 The rest of this paper is organized as follows. In section 2, we

discuss the related work. Assumption proposed in our algorithm is

discussed in section 3. We present the methodology and relevant

algorithms in section 4. Finally, we discussed the conclusion in

section 5.

2. RELATED WORK
 Marti et al [3] proposed to trace malicious nodes by using

watchdog/pathrater. In watchdog when a node forwards a packet,

the node’s watchdog verifies that the next node in the path also

forwards the packet by promiscuously listening to the next node’s

transmissions. If the watchdog finds the next node does not

forward the packet during a predefined threshold time, the

watchdog will accuse the next node as a malicious node to the

source node; The proposal has two shortcomings: 1) to monitor

the behavior of nodes two or more hops away, one node has to

trust the information from other nodes, which introduces the

vulnerability that good nodes may be bypassed by malicious

accusation; 2) The watchdog cannot differentiate the misbehavior

from the ambiguous collisions, receiver collisions, controlled

transmission power, collusion, false misbehavior and partial

dropping. In pathrater algorithm each node uses the watchdog’s

monitored results to rate its one-hop neighbors. Further the nodes

exchange their ratings, so that the pathrater can rate the paths and

choose a path with highest rating for routing. Shortcoming of this

algorithm is that the idea of exchanging ratings genuinely opens

door for blackmail attack.

 SCAN [4] exploits two ideas to protect the mobile ad hoc

networks: 1) local collaboration: the neighboring nodes

collectively monitor each other and sustain each other; and 2)

information cross-validation: each node monitors its neighbors by

cross-checking the overheard transmissions, and the monitoring

results from different nodes are further cross validated. As a

result, the security solution is self-organized, distributed, and fully

localized. In SCAN once a malicious node is convicted by its

neighbors, the network reacts by depriving its right to access the

network by revoking its token. A powerful collusion among the

attackers will break SCAN as it violates the assumption of the

polynomial secret sharing scheme.

 S. Ramaswamy et al presented an algorithm in [5] which claims

to prevent the cooperative black hole attacks in ad hoc network. In

this algorithm each node maintains an additional Data Routing

Information (DRI) table. Whenever a node (say IN) responded to

a RREQ it send the id of its next hop neighbor (NHN) and DRI

entry for NHN to the source. If IN is not a trustable node for

source then source sends a further route request (FRq) to NHN.

NHN in turn responds with FRp message including DRI entry for

IN, the next hop node of current NHN, and the DRI entry for the

current NHN’s next hop. If NHN is trusted node then source

checks whether IN is a black hole or not using the DRI entry for

IN replied by NHN. If NHN is not trustable node then the same

cross checking will be continued with the next hop node of NHN.

This cross checking loop will be continued until a trusted node is

found. Moreover, in the case when the network in not under the

attack, the algorithm takes more time to complete. This algorithm

is based on a trust relationship between the nodes, and hence it

cannot tackle gray hole attacks.

 Gonzalez et al [6] presents a methodology, for detecting packet

forwarding misbehavior, which is based on the principle of flow

conservation in a network. That states that if all neighbors of a

node vj are queried for i) the amount of packets sent to vj to

forward and ii) the amount of packets forwarded by vj to them, the

total amount of packets sent to and received from vj must be

equal. They assume a threshold value for non malicious packet

drop. A node vi maintains a table with two metrics Tij and Rij,

which contains an entry for each node vj to which vi has

respectively transmitted packets to or received packets from. Node

vi increments Tij on successful transmission of a packet to vj for

vj to forward to another node, and increments Rij on successful

receipt of a packet forwarded by vj that did not originate at vj. All

nodes in the network continuously monitor their neighbors and

update the list of those they have heard recently. This algorithm

does not require many nodes to overhear each others’ received

and transmitted packets, but instead it uses statistics accumulated

by each node as it transmits to and receives data from its

neighbors. Since there is no collaborative consensus mechanism,

such an algorithm may lead to false accusations against correctly

behaving nodes.

3. ASSUMPTIONS
The goal of our algorithm is to detect malicious dropping of data

packets by an intruder node. In our approach each node in the

route is monitored by its neighbors. Neighbors counts the no of

data packets forwarded by the node (say dataCount) and on

receiving query message from the source which contains no of

packets actually sent by the source (say ni) neighbors of each

node check if (dataCount ≠ ni) then it replies to source via a result

message. Now the problem is that mobile ad hoc networks are

resource limited. So nodes may drop packets due to overloaded,

lack of CPU cycles, buffer space or bandwidth to forward packets.

For these the above straight forward comparison cannot be

applied in a rigorous manner. Therefore we assume a threshold

probability of packets dropped by a node through no fault of its

own.

 Let α be the threshold probability of non malicious packet drop

by each node then each monitor node check if (ni (1 − α) ≤

dataCount) then it is not a suspected node. In our algorithm

source node will issue a query message to detect malicious node

only when it found that no of packets received by destination (say

d_count) is significantly less than the no packets actually sent. If

the threshold probability of non malicious packet drop at source

node is . Then source will start gray/black hole removal

process only if (d_count < ni (1 –)) can be estimated from α

as follows. If the non malicious data loss at first node in the route

is α then the volume of data actually forwarded by the node to the

next node is ni (1 − α) . Similarly if at the next node data loss is α

then the next node actually forwards ni (1 − α) (1 − α) volume of

data. So at the destination total data loss due to non malicious

packet drop is (ni − ni (1 – α)N , where N is the total number of

nodes in the route. Therefore,

 = 1 − (1 − α)N

4. METHODOLOGY
 The main idea behind this method is to formulate a list of

malicious nodes locally at each node whenever they act as source

node. The behavior of each node in the route is monitored by all

the neighbors of that node. We employ the idea of dividing the

total traffic volume into a set of small data blocks so that the

malicious nodes can be captured in between the transmission of

two such blocks. We choose a window size w which is used to

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

39

determine the total no. of such data blocks say k. Before starting

the transmission of the data packets from the first block source

node (say S) sends a prelude message to the destination node (say

D). On receiving prelude message destination will be alert of the

incoming data packets. So destination node sets a timer for the

end of the incoming transmission and start counting the no. of the

data packets received. After the timer expired it sends a postlude

message to the source containing the no. of data packets received

by it. On the other hand after sending prelude message source

node broadcasts a monitor message to all its neighbors instructing

them to monitor the action of the next node in the route and start

transmitting data. After finishing the transmission source node

sets a time out for the receiving of the postlude message. If source

node received a postlude message before the timeout expire and

the no. of the data packets received by destination is same as the

no. of data packets sent by source or the data loss is within

tolerable range then source starts the transmission of the next data

block. Else it starts detection and removal of the malicious nodes

in the route. Here we have assumed a threshold data loss rate α at

each node and total data loss rate threshold which can be

estimated from α as shown in equation (1) of the previous section.

Selection of the value of α plays an important role in the detection

power of our proposed algorithm, i.e. the capability of the

algorithm to detect misbehaving nodes. The lower the α is the

more likely it is that our algorithm detects any malicious behavior.

However, it also means that the probability of a false detection

will increase with the lower value of α . Also it should be taken

into account the total data loss rate should not be higher otherwise

source node will not invoke the process of malicious node

detection at all. We suggest to assume the maximum value of

first, depending on the path length (which is the hop count for the

route in AODV routing), then from to estimate the value of α .

 On receiving the monitor message neighbors of the source node

checks whether it is the neighbor of the next hop node in route or

not. If it is neighbor of the hop node in route then it starts

monitoring the action of the node. It first initializes a counter to

count the no. of the data packets forwarded by the node also infer

the id of the next node to which it is forwarding the data. To do so

monitor nodes can maintains a copy of the neighbor’s routing

table and determines the next-hop node to which the neighbor

should forward the packet; if the packet is not overheard as being

forwarded, it is considered to have been dropped. Also the

monitor nodes again broadcast a monitor message to all its

neighbors containing the id of the next node to which this node is

forwarding the data, instructing them to monitor the action of the

next node. This process will continue until the next node is the

destination node. If the receiving node of the monitor message is

not the neighbor of the next hop node in route it simply forward

the message to all its neighbors.

 Whenever a source node wish to initiate the gray/black hole

detection and removal process it broadcasts a query message to all

its neighbors and sets a time out for the receipt of the result

message from the monitoring nodes. When the timeout not

expired each time a result message or the node is malicious

message is received for any node source node will append that

node in its findMalicious Table and initialize the voteCount as 1 if

it is not already there, otherwise increments its voteCount by 1

and check if voteCount is greater than a predefined

thresholdCount or not. If greater, then source node will remove

that node from the findMalicious table and enter it into the

Black/Gray Hole table. Broadcasts that the node is malicious to

the network and modify the malicious status of that route by

setting the findHoleStatus as true for that route in its routing table.

When the timeout expired source node will start voting for the

nodes left in the findMalicious table. It broadcasts vote request

message to the network containing the id of each node in the

findMalicious table one by one. Sets a timeout for the receipt of

the vote reply and on receiving a reply voteCount is incremented

by 1. Check if the voteCount is greater than a predefined

thresholdCount remove that node from the findMalicious table

and enter it into the Black/Gray Hole table. Also broadcasts that

the node is malicious to the network and modify the malicious

status of that route by setting the findHoleStatus as true for that

route in its routing table. Finally the source node checks the

findHoleStatus of the route and if it is true then it terminates

sending data until it finds a new route to the destination. If it is

not true then it retries sending data of the same block.

 In the above process source node actually elect the malicious

node from the result messages sent by the neighbors based on the

reference thresholdCount for both result if the node is voted as

malicious by the neighbors or suspected as malicious by

neighbors. By doing so we are avoiding the chance of accusing a

legitimate node as malicious node by colluding neighbors. Also

the vote method from the network enhances the possibility of

detecting a really malicious node which is voted as legitimate by

the colluding neighbors by not replying to the query message. Our

methodology is based on the assumption that a neighborhood of

any node in the ad hoc network has more trusted nodes than

malicious nodes.

 On receiving a query message monitoring nodes checks if the no.

of data packets forwarded by the node under monitor is same as

the no. of data sent to it or the data loss rate is within the tolerable

range (determined by α). If so then it simply broadcast the query

message to all its neighbors by replacing the node id to be queried

as the next node id to which the monitored node is forwarding the

data packets and no. of data packets sent to next node by the data

count of the monitoring node. Else monitoring nodes checks if the

next id to which the monitored node is forwarding the data

packets is NULL then it infers that the monitored node is a black

hole node and replies to source as monitored node is malicious. If

the next node id is not NULL monitoring nodes replied to the

source that monitored node is suspected as malicious node by

sending result message to the source. Also it again generate a

further query message by replacing the node id to be queried as

the next node id to which the monitored node is forwarding the

data packets and no. of data packets sent to next node by the data

count of the monitoring node and broadcast them to all its

neighbors to check if there is any other cooperative malicious

nodes exists or not. All the replies to the source are traversed

through a reverse path of the query message; therefore, the need

for broadcast messages will be minimized.

 On receiving a vote request for any node a regular node in the

network check their Black/Gray Hole table. If an entry for that

node is found it replies to the source node (i.e. the generator of

the vote request) via a vote reply message. Here we assume that if

the node is not a newly joined node then there is a possibility that

node has traversed from the different region of the network. So

any other node in the network may have used this node for

forwarding traffic and found it as malicious.

 On receiving a node is malicious message all regular nodes in

the network first check if they already have an entry for the node

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

40

in their Black/Gray Hole table. If not then they make and entry for

that node in their findMalicious table and initialize voteCount as

1. If the node already exists in any of the above tables ignore the

message. We are doing so because if we black list the node or

increment its voteCount then there is a chance of completely

banning a legitimate node from the network by false probing.

 Here in our method we propose to modify AODV protocol by

introducing three more tables maintained at each node.

 First one is DRI (Data Routing Information) table maintained at

each node for the purpose of monitoring each of its neighbors.

Another table is the findMalicious table which keeps the track of

the nodes suspected as malicious with their voteCount. And the

Black/Gray hole table which keeps the track of the black listed

nodes. We also modified the routing table of the AODV by

adding a new field called findHoleStatus which is set as true if a

malicious node s found in the route. With the help of the

following Figure 1 which shows a current network topology each

of the above tables are depicted below.

Figure 1: Current Network Topology

Table 1: Data routing table at S

DESTINATION

NODE ID
ROUTE findHoleStatus

D E,F,H,I,J False

P A,B,F,H False

J G,H False

Table 2: List of Neighbors maintained at S

NEIGHBOR NODE ID

E

G

A

M

N

Table 3: Data routing information table

maintained at node B for monitoring neighbors

MONITOR D

NODE ID
NEXT NODE ID DATA COUNT

F H 5

K NULL 0

Table 4: FindMalicious table maintained at S

NODE ID VOTE COUNT

F 2

J 1

Table 5: Black/Gray Hole Table Maintained at S

NODE ID

L

K

Pseudo code of our algorithm is as follows.

4.1 Algorithm for Detecting Gray/Black Hole

Step 1: Divide the data packets to be sent in k equal parts.

 DATA [1,….,K];

 Initialize i = 1;

 Comment: Chose window size w, If total no of data packets n

then k = ceiling (n/w)

Step 2: Send prelude(S, D, ni) message to the destination node D.

Where ni is the no of data packets to be sent in current block.

Step 3: Broadcast monitor (S, D, NNR) message to all its

neighbors. Instructing neighbors to monitor next node in the route

(NNR).

Step 4: Starts transmitting data packets from the block Data[i] to

D.

Step 5: Sets timeout TS for the receipt of the postlude(D, S,

d_count) message containing d_count, no of data packets received

by D.

Step 6: If TS not expired and postlude message received, if (ni (1

–) ≤ d _ count)

 Increment i by 1 and go to Step 8.

 else Start Gray/Black hole removal process.

 Comment: Where is a threshold value ranges between 0

and 1 indicates the fraction of total packets gets lost due to error

prone wireless channel. If we assume that α is the permissible

packet loss in each node in the route then = 1 − (1 − α)N ,

where N is the total no of nodes in the route (hop count).

Step 7: If TS expired and postlude message not received then start

Gray/Black hole removal process.

Step 8: Continues from Step 2 when i less than equal to k.

Step 9: Terminates S’s action.

4.1.1 Action by Destination Node D

Step 1: On receiving prelude(S, D, ni) message from S extracts

ni

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

41

 Initialize d_count = 0.

Step 2: Sets timeout TD for the receipt of the current data sample

and waits for the data packets.

Step 3: When TD not expired and a data packet received Update

d_count += 1

Step 4: When TD expired send postlude(D, S, d_count) message

to S.

Step 5: Terminates D’s action.

4.1.2 Action by neighbors On receiving monitor (S,

D, NNR) message

Step 1: On receiving monitor (S, D, NNR) message nodes

extracts the id of the next node in the route NNR, source node id

S and destination node id D.

Step 2: If the receiving node is neighbor of NNR then,

 Step 2.1: Turn on Promiscus mode.

 Step 2.2: Initialize dataCountNNR = 0.

 Step 2.3: Find next node id Nnext to which NNR is

 forwarding the data packets.

 Step 2.4: start counting data packets by incrementing

dataCountNNR += 1.

 Step 2.5.: If Nnext is not destination node D then

 Step 2.5.1: Broadcast monitor (S, D, NNR) message to all its

neighbors replacing NNR by Nnext.

Step 3: Else Rebroadcast monitor (S, D, NNR) message to all its

neighbors.

Step 4: Terminates its action.

4.2 Gray/Black Hole Removal process

4.2.1 Action by Source Node S

Step 1: Broadcast query(S, D, NRREP, ni) message to all its

neighbors. Where NRREP is the id of the node sending route reply

message to S.

Step 2: Sets timeout TRES for the receipt of the result (MN, S,

NRREP) message from the monitoring node MN.

Step 3: When TRES not expired and result message received or

“NRREP Malicious” received then extracts NRREP.

 Step 3.1 If NRREP already exists in FindMalicious table

 Step 3.1.1: Then increment voteCount for NRREP by 1.

 Step 3.1.2: If votecount >= thresholdCount

 Step 3.1.2.1: Remove NRREP from FindMalicious table and

append NRREP in Gray/BlackHole table.

 Step 3.1.2.2: Broadcast “NRREP Malicious” to the Network.

 Step 3.1.2.3: Set findHoleStatus = true in the

 routing table of S for the route to D.

 Step 3.2: Else

 Step3.2.1: Append NRREP in FindMalicious.

 Step 3.2.2: Initialize voteCount = 1.

Step 4: Initialize j = 1.

Step 5: When j <= length of FindMalicious table

 Step 5.1: Broadcast VREQ(S, Nj) to the network

 requesting other nodes in the network to vote for Nj if it is

malicious.

 Step 5.2: Sets timeout TVREP for reply from the network

VREP(RN, S, Nj) where RN is id of any regular node in the

network.

 Step 5.3: When TVREP not expired and VREP message received

then

 Step 5.3.1: increment voteCount for Nj by 1.

 Step 5.4: If voteCount >= thresholdCount

 Step 5.4.1: Remove NRREP from FindMalicious table and

append NRREP in Gray/BlackHole table.

 Step 5.4.2: Broadcast “NRREP Malicious” to the

 Network.

 Step 5.4.3: Set findHoleStatus = true in the routing table of S

for the route to D.

 Step 5.5: Increment j by 1.

Step 6: If findHoleStatus is True

 Step 6.1: Terminate sending data. Find new route to D.

Step 7: Resume its normal action.

4.2.2 Action by Neighbors on receiving on receiving

query(S, D, NRREP, ni) message

Step 1: On receiving query(S, D, NRREP, ni) message nodes

extracts NRREP (id of the node sending route reply message to D),

S, D and ni(no of data packets sent to D).

Step 2: If the receiving node is neighbor of NRREP then,

 Step 2.1: If ni (1 − α) ≤ dataCount

 Step 2.1.1: when Nnext is not D

 Step 2.1.1.1: Broadcast query(S, D, NRREP, ni)

 message to all its neighbors replacing NRREP by Nnext.

 Step 2.2: Else

 Step 2.2.1: If Nnext equals to NULL then Nnext itself dropping

all the packets

 Step 2.2.1.1: Reply “NRREP Malicious” to S.

 Step 2.2.2: Else

 Step 2.2.2.1: Reply result (MN, S, NRREP) to S,

 which means NRREP may be malicious.

 Step 2.2.2.2: Broadcast query(S, D, NRREP, ni)

 message to all its neighbors replacing NRREP by Nnext and

ni by dataCount for NRREP.

Step 3: If the receiving node is not neighbor of NRREP then

broadcast query(S, D, NRREP, ni) message to all its neighbors.

Step 4: Terminates its action.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 7

42

4.2.3 Action by any regular nodes (RN) on receiving

on receiving VREQ(S, Nj) message

Step 1: On receiving VREQ(S, Nj) message nodes extracts Nj

Step 2: If Nj exists in Gray/BlackHole table

 Step2.1: Reply VREP(RN, S, Nj) to S.

Step 3: Terminates its action.

4.2.4 Action by any regular nodes (RN) on receiving

on receiving “NRREP Malicious”

Step 1: On receiving “NRREP Malicious” all regular nodes in the

network check Gray/BlackHole table.

Step 2: If NRREP not exists in Gray/BlackHole table, then

 Step 2.1: If NRREP not exists in FindMalicious table.

 Step 2.1.1: Append NRREP in FindMalicious table.

 Step 2.2.2: Initialize voteCount = 1.

Step 3: Terminates its action.

5. CONCLUSION
Black hole attacks are significant attacks, probably that need to be

addressed in mobile ad hoc networks. Although, substantial

research had been done to combat black hole attacks, here we

successfully attempted to detect and prevent the cooperative black

and gray hole attacks. . The theoretical results indicate that node

working under this algorithm have the potential of the over half of

the actual nodes comprised by attack. Finally we also proposed a

feasible solution for detection and removal of chain of cooperative

black and gray hole attack in AODV protocol with improved

complexity O(n) which is half of the previous complexity O(n2)

in previous work. In our solution each node can locally maintain

its own table of black listed nodes whenever it tries to send data to

any destination node and it can also aware the network about the

black listed nodes. This list of malicious nodes can be applied to

discover secure paths from source to destination by avoiding

multiple black/ gray hole nodes acting in cooperation.

6. REFERENCES
[1] “Security Issues in Mobile Ad Hoc Networks- A

Survey” Wenjia Li and Anupam Joshi, Department of

Computer Science and Electrical Engineering,

University of Maryland, Baltimore County.

[2] Wireless/Mobile Network Security, Y. Xiao, X. Shen,

and D.-Z. Du (Eds.) pp. 170 – 196,2006 Springer, “A

Survey on Intrusion Detection in Mobile Ad Hoc

Networks” Tiranuch Anantvalee.

[3] S. Marti, T. J. Giuli, K. Lai, and M. Baker, Mitigating

Routing Misbehavior in Mobile Ad Hoc Networks.

Proceedings of the 6th annual international conference

on Mobile Computing and Networking (MOBICOM),

Boston, Massachusetts, United States, 2000, 255-265.

[4] H. Yang, J. Shu, X. Meng, and S. Lu, “SCAN: Self-

organized network-layer security in mobile ad hoc

networks,” IEEE Journal on Selected Areas in

Communications, vol. 24, issue 2, pp. 261-273,

February 2006.

[5] S. Ramaswamy, H. Fu, M. Sreekantaradhya, J. Dixon,

and K. Nygard. Prevention of cooperative black hole

attack in wireless ad hoc networks. In Proceedings of

2003 International Conference on Wireless Networks

(ICWN’03), pages 570–575. Las Vegas, Nevada, USA,

2003.

[6] Oscar F. Gonzalez, Michael Howarth, and George

Pavlou, Detection of Packet Forwarding Misbehavior in

Mobile Ad-Hoc Networks Center for Communications

Systems Research, University of Surrey, Guildford, UK.

Integrated Network Management, 2007. IM '07. 10th

IFIP/IEEE International Symposium on May 21, 2007.

