
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

65

A FRAMEWORK FOR SOFTWARE ARCHITECTURE

VISUALIZATION AND EVALUATION

Dr. S. Margret Anouncia Merin Cherian Anubhuti Parija
 Professor, M.S Software Engg M.S Software Engg
 School of Computing Sciences VITU, Vellore VITU, Vellore
 VITU, Vellore

Dulcy Sylvia.R Jayaprasanna. D
 M.S Software Engg. M.S Software Engg
 VITU, Vellore VITU, Vellore

Abstract

This paper presents a framework for visualization and

evaluation of software architectural styles. There has

been significant research made to improve the

software architecture visualization and evaluation.

Most of the tools developed for this purpose don’t

satisfy all the framework’s elements. Hence the paper

presents a framework that builds modules from

requirements, measure modularity, visualizes

architecture and evaluates the visualized architecture

satisfying all elements.

INTRODUCTION

Software design is the process of applying various

techniques and principles for the purpose of defining

a system in sufficient detail to permit its physical

realization. Visualization makes people to understand

information presented in a shorter time or in a great

depth. The output of the design process is the design

description. As the design description is complex and

difficult to understand, there is a need for

visualization method for better understanding. There

is no existing tool for proper visualization.

1. MOTIVATION OF THE PAPER

Currently the most challenging problem is the

transition from software requirement to appropriate

architecture design of software system. Most of the

requirements are conflicting and unpredictable in

nature. The absence of a proper automated

tool which can evaluate all the attributes for an

architectural style also adds to need for further

research in design field. Manually designed

architectural styles are misleading and time

consuming. Hence there is a necessity for an

automated tool which should generate the appropriate

architecture and its evaluation.

2. RELATED WORK

The automated transformation of software

requirements into architectural design is one of the

challenging fields. A lot of research is being

performed throughout. Some important ones are

specified below.

The main contribution of [1] by Koen Yskout,

Riccardo Scandariato, Bart De Win, Wouter Joosen

DistriNet, Katholieke Universiteit Leuven, Belgium

is the elaboration of a set of transformations for some

important security requirements, namely delegation,

authorization, and auditing. These transformations are

based on an extensible meta-model capturing the

requirements-level concepts that are important for

transformation purposes. The second approach which

falls under this category is developed by Jorge

Enrique Perez Martinez and Almudene Sierra Alonso

proposed an automated methodology for the

transition from analysis to architecture styles using

UML notations. [2].Another research group by

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

66

Hassan Reza, Dan Jurgens, Jamie White, Jason

Anderson, and Jay Peterson developed a tool based

on a set of scenarios that allows the user to select an

architecture based on non-functional requirements

[3]. Non-functional requirements are then mapped to

tactics using weighting (or scoring techniques). The

architecture is then selected by its compatibility.

Researchers G.Zayaraz and P.Thambidurai proposed

a framework for choosing appropriate software

architecture based on the quality requirements of

different stakeholders [4].

A software architecture design provides a high-level

abstraction of system topology, functionality and

behaviour. It is source for early system understanding

and analysis. It also provides the foundation for

subsequent detailed design and implementation.

.Researchers Keith Gallagher, Andrew Hatch and

Malcolm Munro proposed an approach focusing on

the improvement of software architecture

visualization using qualitative framework. The main

objective is to compare and evaluate the different

software architecture visualization tools using the key

features of framework. The framework is derived by

the application of the Goal Question Metric

paradigm called GQM framework [2]..Another

approach by Liming Zhu, Muhammad Ali Babar and

Ross Jeffery improves the software architecture

evaluation process by systematic extraction and

appropriate documentation of architecture significant

information[6]. Researchers Muhammad Ali Babar,

Liming Zhu and Ross Jeffery describes a set of

features for evaluation method which provides

guidance for selecting the most appropriate

evaluation method.[5].

3. OUR APPROACH

 Software Architecture defines the overview of the

system which consists of various components and

their relationship among them. There has been a lot of

demand for quality software system which can be

primarily achieved through architectural design.

Hence this paper proposes a framework

for a tool which is named as ‘Architecture

Visualization and Evaluation for Software Systems’

(AVESS) .

3.1. OVERALL FRAMEWORK

 The architectural design adopted for the proposed

framework is pipe and filter which defines a

continuous flow of information. Pipe and filter

architectural style comprises of components and

connectors. Each component has a set of inputs and a

set of outputs. A component reads stream of data on

its input and produces a stream of data on its output

by applying transformation to the input. Components

are called filters and connectors are called pipes.

The figure 3.1 explains the architectural design of the

proposed framework. The architecture design

comprises of eight modules. Each module performs

distinct functions required for visualization and

evaluation of architectural styles. The requirement

extractor module extracts the requirements from the

functional requirements given by the user by

comparing with predefined requirement keywords.

The successor module, module builder groups the

requirements based on some predefined criteria and

builds modules. The modules are assigned names by

user. The generated modules are further refined by

measuring modularity which consists of cohesion and

coupling. The architecture of the application is

determined using some predefined questions. Then

the appropriate architecture diagram is generated by

the tool. The needed attributes are determined from

the extracted requirement features. These needed

attributes are compared with predefined attributes of

architecture. Each attribute is assigned a value. Then

total weight is calculated by summing up the

individual attribute weights. Finally the evaluation

result is displayed as bar chart.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

67

Requirement

Extractor

Module

Builder

Modularity

Measurement

Comparative

Analysis

Architectural

Style Builder

Appropriate

Style
Determination of

Architectural

Style(Client Server

/ Layered)

Determination

of Attributes

Requirements Requirement

Features Modules

Assessment Based

on Metrics

Architecture

Design

Compared Features

Graphical

Representation of

Evaluated Result

Measured

Modules

Predefined

Features

Fig.3.1 Overall Framework

3.2 Use Case Model for AVESS

The overall functionality of this automated software

architecture visualization system is depicted using

Use Case Model as shown in fig.3.2. This describes a

high level process of what an actor will do with a

system. An actor may perform an event to start the

system. This description does not represent individual

steps in the process but represents the high level

process itself.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

68

 Fig.3.2 Use Case Model for AVESS

3.3. DETAILED DESIGN

On analyzing the given requirements, it

was found that data flow diagram (DFD) is the

most appropriate model to be used. The level 4

gives detailed design. Context level DFD (Fig.2),

Level 1(Fig.3), level 2(Fig.4), level 3(Fig.5) shows

SOFTWARE ARCHITECT

SOFTWARE DESIGNER

SOFTWARE TESTER

PREDEFINED CRITERIA CATALOG

PREDEFINED QUESTIONS CATALOG

AUTOMATED TOOL

PREDEFINED FEATURES CATALOG PROVIDING

REQUIREMENTS

EXTRACTING

REQUIREMENT FEATURE

GROUPING AND

BUILDING MODULES

MEASURING

MODULARIZATION

DISPLAY

ARCHITECTURE DESIGN

MAPPING TO QUALITY

ATTRIIBUTES

DISPLAY EVALUATION

RESULT IN GRAPHICAL

REPRESENTATION

ASSIGNING METRICS

DETERMINING

ARCHITECTURE STYLE

PERFORMANCE

PERSPECTIVE INFORMATION

HELP TEST CASE

GENERATION

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

69

the systems decompositions and finally level

4(Fig.6) brings out the detailed design in which

each processing bubble performs a unit function.

Context level depicts the input and the output of

the system. When the level oriented decomposition

is made, the bubbles in the DFD are disintegrated

to unit level functions. The complete detailed

design is clearly depicted in the level 4 DFD.

Figure 3.3:4th level DFD

The functional and non-functional requirements are

given as input by the user to the automated tool.

These requirements are stored in the database. The

required features are retrieved from database .These

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

70

required features are grouped based on the

comparison with predefined keywords. These

grouped features are ranked and modules are built

and naming of these built modules is done by the

user. The interaction among the modules is

determined and the modules are measured based on

cohesion and coupling. The most appropriate

architectural style is determined based on the

measured modules and grouped features. The user

visualises the appropriate architectural style. The

quality attributes are determined from the non-

functional requirements. There is a comparison of

these attributes with predefined attributes based on

questionnaire approach. The compared attributes are

evaluated based on metrics. The evaluated attributes

are displayed in form of graphical representation.

3.4 IMPLEMENTATION OF FRAMEWORK

A novel visualization and evaluation technique

framework is developed for most widely used

architecture style. The chapter discusses on the tool

which automatically generates and evaluates the

architecture from requirements. The implementation

of each unit function within the system is described in

detail.

3.4.1 TOOLS USED

 The entire software architecture visualization and

evaluation system is implemented using java with

NetBeans 6.1. The system is decided to be built

using java because it is platform independent as well

as it holds many inbuilt functions and string

manipulation operations. The visualization of the

architecture style can be easily made using java

frames.

3.4.2 METHODOLOGY

The implementation of three major modules of the

system is described in detail

3.4.2.1 REQUIREMENT EXTRACTOR

The requirement extractor module gets functional

requirements as input from the users, extracts the

required features based on comparison with

predefined keywords and stored in a database. The

functional requirements, input, output and

dependency considering the requirements are

provided by the user in the text box. These

requirements are then compared with the predefined

keywords stored in an array. Along with this a table

called freq is created in the database. Further

extracted features along with input, output and

dependency are stored in freq table.

3.4.2.2 MODULE BUILDER

The module builder groups the required features

based on the dependency of the extracted features and

those grouped features are considered as modules. It

also allows users to rename the modules. The features

along with dependency are fetched fro freq table.

These features are then compared with set of

keywords stored in different arrays. Some of key

arrays

are processing, display, authentication etc. If the

dependency is null, then the requirement is

considered as separate module. A module will have

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

71

many requirements and is considered as different

module, only if those requirements have the same

dependency and belong to the same array. Otherwise

they are considered as distinct modules. These

modules are stored in modfun table along with

output, input, link and module function. Then these

modules are displayed in rectangular boxes along

with module functionality. The user can rename these

modules. These renamed modules are stored in

module table in database. The module count is also

found and stored

for further usage.

3.4.2.3 MODULARITY MEASUREMENT

This module refines modules by measuring

cohesion and coupling. The modules along with its

fan-in / fan-out and module count are retrieved from

database. The modularity is calculated with the help

of fan-in and fan-out of each module. i.e. by finding

out the dependency between the fan-in and fan-out of

the module The type of fan-in and fan-out is

determined by finding whether it contains data or data

structure. Data coupling is found out by finding

whether the data is passed between the modules and

Stamp coupling is found out by finding whether the

data structure is passed between the modules. Then

the overall coupling factor is calculated by applying

metrics for the data coupling and stamp coupling.

4. CONCLUSION

Software Architecture defines the overview of the

system. This paper gives the proposal of the

framework of a tool which visualizes as well as

evaluates Software Architectural Styles. The tool

will generate architectural design containing

Client Server Style and Layered style. So which

ever application given, it will either generate

client server or layered style. To evaluate the

architectural style there is a consideration of quality

attributes and framework elements. In future there

can be a lot of improvement in the evaluation criteria.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 8

72

REFERENCES

11) Koen Yskout, Riccardo Scandariato, Bart De

Win, Wouter Joosen, "Transforming Security

Requirements into Architecture," ares, pp. 1421-

1428, 2008 Third International Conference on

Availability, Reliability and Security, 2008.

12) Keith Gallagher, Andrew Hatch, Malcolm

Munro, "Software Architecture Visualization: An

Evaluation Framework and Its Application," IEEE

Transactions on Software Engineering, vol. 34, no. 2,

pp. 260-270, Mar/Apr, 2008

2

13) Hassan Reza,Dan Jurgens,Janie White,Jason

Anderson,and Jay Peterson:, “An Architectural

design Selection Tool Design Based on design

Tactics, Scenarios and Non Functional Requirements

“,eit, p. 6, 2005 IEEE International Conference on

Electro Information Technology (EIT’05), 2005

14) G.Zayaraz and P.Thambidurai “Software

Architecture Selection Framework Based on Quality

Attributes”, pp. 167-170, IEEE Indicon Conference,

2005.

15) Muhammad Ali Babar, Liming Zhu, Ross

Jeffery, "A Framework for Classifying and

Comparing Software Architecture Evaluation

Methods," aswec, p. 309, 2004 Australian Software

Engineering Conference (ASWEC'04), 2004

16) Liming Zhu, Muhammad Ali Babar, Ross

Jeffery, "Mining Patterns to Support Software

Architecture Evaluation," wicsa, p. 25, Fourth

Working IEEE/IFIP Conference on Software

Architecture (WICSA'04), 2004

17) Jorge Enrique Perez Martinez and Almudene

Sierra Alonso “Heuristics for the transition from

Analysis to Software Architecture” , p.

311,Proceedings of the Fourth Working IEEE/IFIP

Conference on Software Architecture ,2004

