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Abstract 

The economic emission dispatch (EED) assumes a lot of significance to meet the clean 

energy requirements of the society, while at the same time minimising the cost of 

generation. The solution schemes in an attempt to arrive at the global best through the use 

of evolutionary algorithms are however inadequate to cater to problems of large size.  The 

search based EED approaches are computationally inefficient particularly for problems 

with large number of decision variables. This paper attempts to develop a new SA based 

modified approach with a single decision variable to solve the EED problem. The 

philosophy involves the introduction of a new decision variable through a prudent 

mathematical transformation of the relation between the decision variable and the optimal 

generations. It thus yields a reduction in the number of problem variables and contributes 

to realistically enhance the performance of the existing heuristic strategies. The feasibility 

of the proposed approach is evaluated through two test systems and the results are 

compared with the available methods to highlight its suitability for online applications. 

 

Nomenclature 

COST   cost function 

ELD   economic load dispatch 

EED   economic emission dispatch 

PA   proposed algorithm 

SA       simulated annealing 

ESA   existing SA based ELD 
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iii cba &   fuel cost coefficients of  
thi generating plant  

iii fed &   emission coefficients of  
thi generating plant  

iIC    incremental cost at 
thi generation plant 

 minimum and maximum values of iIC  respectively 

ng                      number of generating plants 

DP    total power demand  

GiP    generation at 
thi generating plant  

   minimum and maximum of GiP  respectively 

 Gii PF   fuel cost function of  
thi generating plant in h/$  

 Gii PE   emission cost function of  
thi generating plant in hkg /  

ih    price penalty factor of  
thi generating plant in kg/$  

tT      current temperature 

1tT
    next temperature 

    incremental cost of received power  

  minimum and maximum values of   respectively 

Ф   objective function to be minimized 

T    augmented objective function to be minimized 

     cooling coefficient 

)(TP     transition probability in the interval [0,1] 

F     reduction in cost of the trial solution compared with the current  

solution 

 

1.0 Introduction 

Economic Load Dispatch (ELD) plays an important role in maintaining a high degree of 

economy and reliability in power system operational planning. It is a computational 

process of allocating the total required generation among the available generating units 
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subject to load and operational constraints such that the cost of operation is minimum. 

Various techniques such as lambda iteration, gradient search, linear programming, 

dynamic programming and Lagrangian relaxation are used to solve ELD problem [1-2]. 

Recently intelligent algorithms such as Pattern Search [3], Neural Networks [4-5], Genetic 

Algorithm [6], Simulated Annealing (SA) [7], Evolutionary Programming [8] and Particle 

Swarm optimisation [9] are applied to solve ELD problems.  

 

Operating at absolute minimum cost can no longer be the only criterion for dispatching 

electric power due to increasing concern over the environmental considerations. The 

generation of electricity from fossil fuel releases several contaminants, such as sulphur 

dioxides, nitrogen oxides and carbon dioxide into the atmosphere. The pressing public 

demand for clean air and the enforcement of environmental regulations in recent years 

have changed the dispatch problem with conflicting objectives of minimising both the fuel 

cost and the emissions.  

 

Several methods have been suggested for solving the multi-objective economic emission 

dispatch (EED) problem. A direct NR method based on alternative jacobian matrix [10], a 

recursive approach based on dynamic programming [11], a simplified recursive approach 

[12],  a progressive articulation of preference information based optimisation technique 

[13] and an analytical strategy based on mathematical modelling [14] have been presented 

to handle combined EED problems. In recent years, heuristic optimisation techniques have 

aroused greater interest due to their flexibility, versatility and robustness. These 

evolutionary approaches such as an interactive fuzzy satisfying based SA technique [15], 

particle swarm optimisation based goal-attainment method [16], a multiobjective genetic 

algorithm [17] and a fuzzified multi-objective particle swarm optimisation algorithm [18] 

have been extensively articulated to obtain the global optimal solution. However, on 

account of the fact that EED problems necessarily involve a large number of problem 

variables, the heuristic approaches have been found to suffer from huge computational 

burden and end up with consuming exhaustively large execution times. Therefore an 

efficient strategy that is independent of the number of generating plants in the system,  is 
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formulated with a single decision variable and invokes the use of SA to solve for EED 

problem in this paper.  

2.0  Problem Formulation 

The aim of EED is to minimise the total generation cost and emissions of a power system 

for a given load while satisfying various constraints [1-2]. The objective function is thus 

obtained by blending the emission cost function with the fuel cost function through the use 

of a price penalty factor [19] and the constrained optimisation problem is formulated as 

Minimise                                        (1) 

 

                Subject to                   

                                                      (2) 

                                             (3) 

   ngi ,,2,1   

where 

                                                                       (4) 

 

2.1 Classical   iteration method  [1] 

The augmented lagrangian function for the ELD problem can be written as 

 

Minimise                                       (5) 

  

The co-ordination equation from the above function can be obtained as  
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                                              (6) 

 

The above equation can be solved iteratively for EED imposing on itself the generator 

power limits and the power balance equation as constraints. This classical lambda-iterative 

technique is in use for a long time as it is simple and easy for online implementation.  

 

3.0 Simulated Annealing 

The SA algorithm, proposed by Kirkpatrick et al in 1983 [20], is a powerful optimisation 

technique, which exploits the resemblance between a minimisation process and the 

annealing process of the molten metal. The annealing process begins with a high 

temperature and the metal is slowly cooled so that the system maintains the thermal 

equilibrium at every stage, until the energy of the system acquires the global minimum 

value. The physical annealing process is simulated in the SA technique for the 

determination of global or near-global optimal solutions of the difficult combinatorial 

optimisation problems involving non-linear objective functions and complex constraints. A 

temperature like parameter, T, is defined and gradually reduced in the optimisation 

process of SA. At each temperature, an iterative procedure, proposed by Metropolis et al 

[21] is performed.  

 

A trail solution is obtained by perturbing the current solution according to a Gaussian 

probabilistic distribution function. If the cost of the trial solution is lower than that of the 

current solution, then it is accepted and used to generate another trial solution; else, the 

solution is accepted only when its transition probability of acceptance )(TP , given by 

Boltzmann distribution, is greater than a randomly generated number between 0 and 1.  

                                                            (7) 
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At each temperature, the procedure for generating and testing the trial solutions are 

repeated for an appropriate period of time (i.e. for an appropriate number of iterations) in 

order to allow the algorithm to settle into its thermal equilibrium i.e. a balanced state. If 

this time is too short, the algorithm is likely to converge to a local minimum. The 

combination of temperature steps and cooling times is known as the annealing schedule, 

which is usually selected empirically. The temperature is then reduced by the following 

geometric function 

tt TT  1                                                               (8) 

and the above mentioned iterative process is repeated till there is no significant 

improvement in the solution after a prespecified number of iterations. It can also be 

terminated when the maximum number of iterations is reached. It is to be noted that 

accepting deteriorated solutions in the above process enables the SA solutions to jump out 

of the local optimum solution points and paves the way to seek global optimum solutions.  

 

4.0 Proposed Methodology 

In all the existing SA based approaches for ELD, the real power generation of all 

generating units are considered as the decision variables that makes the size of the problem 

vary large, slow down the speed of these algorithms and hence not suitable for systems 

having larger number of generating units. In the proposed approach, the   of the classical 

 - iteration approach is considered as the only decision variable irrespective of the 

number of generating units. The real power generation of all the generating plants are 

considered as the problem dependant variables and expressed as a function of  . In this 

approach, the real power generations are computed using Eq. (6) for each  value 

obtained during the SA iterations.   

 

In the existing SA based ELD, the ranges for decision variables are the implicit lower and 

upper limits on real power generation of all the plants. But in the proposed approach, the 

lower and upper limits of the decision variable-  depend on the minimum and maximum 

power demands that the system can supply. The first step in obtaining these values is to 
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compute the lower and upper incremental cost values by substituting the respective 

generation power limits in Eq. (6) for all the plants as  

 

      
ngi ,,2,1 

      (9) 

 

The next step is choosing the lowest and highest incremental cost values, obtained from 

Eq. (9), as the limits for .   

 

                                  (10) 

 

The SA searches for the optimal solution by minimising a cost function. In the proposed 

formulation, the net fuel cost all the generating plants is considered as the cost function. 

However, a penalty term is included in the cost function to handle the explicit power 

balance constraint. The penalty term increases the cost of the function for infeasible 

solutions. The cost function is therefore built as a blend of fuel cost function and the 

power balance constraint through the use of a penalty factor as 

 

Minimise                           (11) 

 

The number of decision variables in this formulation is always one, whereas the existing 

SA based approaches require the generation of all the plants as the variables. This 

reduction in decision variables will reduce the overall computational burden and improves 

the convergence rate. The algorithm of the proposed solution methodology for solving the 

ELD problem is outlined. 
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1. Read the input data of the EED problem 

2. Set  1i  

3. Choose initial temperature tT , cooling coefficient  , number of iterations for 

each temperature tN  and maximum number of iterations maxN . 

4. Choose a random start point o  in the specified range 

5. Repeat the following till 0% tNi   

a. Select a random point i  from the neighbourhood of o  within the 

specified range. 

b. Solve Eq. (6) for GiP  while imposing the limits given by Eq. (3).  

c. Calculate iCOST  using Eq. (11) 

d. If  then accept the trial solution by setting io     

Else select a random number   in the range [0,1] 

 if )(TP , then io   , otherwise discard the trial point 

e. Check for convergence by comparing the number of iterations i  with 

maxN . If converged, stop and print the ELD corresponding to the o . 

Otherwise, set 1 ii  

6. Reduce the temperature by the factor   using Eq. (12) and go to step (5). 

5.0  Simulation Results 

The proposed algorithm is tested on two examples, a six and an eleven generator systems, 

the data of which are available in Tables 1 and 2 respectively. The simulation is performed 

over a wide range of load demand using Matlab tool box and the results of PA are 

compared with that of classical  iteration method, the methods suggested in References 

[11] and [13], and existing SA (ESA) strategy. 

 

The generator allocations for the different load demands for both systems are tabulated in 

Tables 3 and 4 respectively. The fuel cost for both test systems are compared in Tables 5 

and 6 respectively. It is observed that the PA allows to incur the same cost as that of the 
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traditional  iteration method, thus validating the performance of the new approach. 

The fuel cost for the other two methods cited in ref [11] and [13] also closely fall in line. It 

is only in the ESA, where the cost accrues to be slightly higher. 

 

The emissions for the examples under study are compared in Tables 7 and 8 respectively. 

It is worthy to note that the emissions are exactly as that of  iteration method thus 

once again illustrating the merits of the new strategy. The emissions of the remaining two 

are also similar except that in ESA, where it is slightly lower. This is due to the fact that 

the increased fuel cost in ESA is augmented by a considerably smaller emission. 

 

It is highly satisfying to note from Table 9 that the normalised execution time (NET) of 

PA is very low when compared to ESA and it is almost constant to both the systems, thus 

emphasising the fact that the performance of the new algorithm is independent of system 

size. It has to be acknowledged that in the case of ESA, the NET is much larger and 

almost increases exponentially with the system size. 

 

Table 1  Data for 6 Generator system 

 

Gen 

No 

Fuel cost coefficients Emission coefficients Generation limits 

a  b  c  d  e  f  
min

GP  
max

GP  

1 0.1525 38.540 756.800 0.00420 0.3300 13.860 10 125 

2 0.1060 46.160 451.325 0.00420 0.3300 13.860 10 150 

3 
0.0280 40.400 1050.00 0.00683 

-

0.5455 
40.267 35 225 

4 
0.0355 38.310 1243.53 0.00683 

-

0.5455 
40.267 35 210 

5 
0.0211 36.328 1658.57 0.00460 

-

0.5112 
42.900 130 325 

6 
0.0180 38.270 1356.66 0.00460 

-

0.5112 
42.900 125 315 
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Table 2  Data for 11 Generator system 

 

Gen 

No 

Fuel cost coefficients Emission coefficients Generation limits 

a  b  c  d  e  f  
min

GP  
max

GP  

1 0.00762 1.92699 387.85 0.00419 
-

0.67767 
33.93 20 250 

2 0.00838 2.11969 441.62 0.00461 
-

0.69044 
24.62 20 210 

3 0.00523 2.19196 422.57 0.00419 
-

0.67767 
33.93 20 250 

4 0.00140 2.01983 552.50 0.00683 
-

0.54551 
27.14 60 300 

5 0.00154 2.22181 557.75 0.00751 
-

0.40060 
24.15 20 210 

6 0.00177 1.91528 562.18 0.00683 
-

0.54551 
27.14 60 300 

7 0.00195 2.10681 568.39 0.00751 
-

0.40006 
24.15 20 215 

8 0.00106 1.99138 682.93 0.00355 
-

0.51116 
30.45 100 455 

9 0.00117 1.99802 741.22 0.00417 
-

0.56228 
25.59 100 455 

10 0.00089 2.12352 617.83 0.00355 
-

0.41116 
30.45 110 460 

11 0.00098 2.10487 674.61 0.00417 
-

0.56228 
25.59 110 465 

 
 

 



©2010 International Journal of Computer Applications (0975 – 8887)  

Volume 1 – No. 10 

 

79 

 

Table 3  Generation allocations for 6-generator system in MW 
 

DP  1GP  2GP  3GP  4GP  5GP  6GP  
500 19.999 14.899 93.051 90.064 143.647 138.339 

600 31.723 28.662 108.405 103.960 166.507 160.744 

700 43.446 42.426 123.758 117.855 189.366 183.148 

800 55.170 56.189 139.112 131.751 212.225 205.552 

900 66.894 69.953 154.466 145.647 235.084 227.957 

1000 78.617 83.716 169.820 159.542 257.943 250.361 

1100 90.341 97.479 185.174 173.438 280.802 272.765 

 

Table 4  Generation allocations for 11-generator system in MW 
 

DP  
1GP

 

2GP

 

3GP

 

4GP

 

5GP

 

6GP

 

7GP

 

8GP

 

9GP

 

10GP

 
11GP

 

1000 85.61 76.67 87.26 78.50 47.92 79.33 49.77 129.60 122.37 119.60 123.40 

1250 94.62 82.69 97.02 102.33 62.73 102.53 64.85 165.51 156.89 160.27 160.56 

1500 103.63 88.71 106.77 126.17 77.54 125.73 79.93 201.42 191.41 200.95 197.74 

1750 112.64 94.73 116.53 150.01 92.35 148.91 95.01 237.33 225.93 241.62 234.91 

2000 121.65 100.75 126.29 173.85 107.15 172.16 110.10 273.23 260.45 282.30 272.08 

2250 130.66 106.76 136.05 197.69 121.96 195.37 125.18 309.14 294.97 322.97 309.26 

2500 139.67 112.78 145.80 221.53 136.77 218.58 140.26 345.05 329.48 363.65 346.43 

 

 

Table 5  Comparison of fuel cost in h/$  for 6-generator system  
 

DP  
 iteratio

n 
Ref [11] Ref [13] ESA PA 

500 27092.42 27092.46 27092.46 27096.47 27092.42 

600 31628.63 31628.64 31628.63 31629.99 31628.63 

700 36313.92 36313.94 36313.92 36315.75 36313.92 

800 41148.31 41148.33 41148.32 41152.50 41148.31 

900 46131.86 46131.85 46131.87 46133.67 46131.86 

1000 51264.41 51264.49 51264.47 51266.42 51264.41 

1100 56546.15 56546.18 56546.17 56561.31 56546.15 
 

 

Table 6   Comparison of fuel cost in h/$   for 11-generator system 
 

DP  
 iteratio

n 
Ref [11] Ref [13] ESA PA 

1000 8502.30 8502.29 8502.29 8502.71 8502.30 

1250 9108.38 9108.38 9108.38 9108.78 9108.38 

1500 9733.53 9733.54 9733.54 9733.93 9733.53 

1750 10377.78 10377.77 10377.77 10379.47 10377.78 

2000 11041.09 11041.08 11041.08 11043.65 11041.09 

2250 11723.47 11723.47 11723.47 11724.10 11723.47 
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2500 12424.94 12424.94 12424.94 12426.01 12424.94 
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Table 7   Comparison of emission  in kgRs /  for 6-generator system 
 

DP  
 iteratio

n 
Ref [11] Ref [13] ESA PA 

500 261.63 261.63 261.63 261.39 261.63 

600 338.99 338.99 338.99 338.05 338.99 

700 434.38 434.38 434.38 434.17 434.38 

800 547.79 547.80 547.80 547.63 547.79 

900 679.24 679.24 679.24 678.58 679.24 

1000 828.71 828.72 828.72 828.14 828.71 

1100 996.22 996.22 996.22 995.62 996.22 
 

Table 8  Comparison of emission in kgRs /  for 11-generator system 
 

DP  
 iteratio

n 
Ref [11] Ref [13] ESA PA 

1000 205.20 205.20 205.20 205.18 205.20 

1250 339.87 339.87 339.87 339.63 339.87 

1500 540.54 540.54 540.54 540.60 540.54 

1750 807.23 807.22 807.22 806.09 807.23 

2000 1139.91 1139.91 1139.91 1138.62 1139.91 

2250 1538.60 1538.60 1538.60 1536.23 1538.60 

2500 2003.30 2003.30 2003.30 2002.15 2003.30 
 

 

Table 9  Normalized Execution Time in seconds 
 

Test System ESA PA 

6 Generator System 482 23.50 

11 Generator System 1030 28.45 

 

6.0 Conclusion 

A new strategy involving SA for solving EED problem has been developed with a view to 

lower the computational burden and render it suitable for online applications. The close 

agreement of the performance of PA with the benchmark  iteration method, besides 

the other two formulations obtained from references [11] and [13] has allowed to acclaim 

its accuracy. The fact that it has been coined with a single decision variable facilitates it 

with a smaller search horizon and cool down at the global optimal solution vary fast. It is 
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implicit that the new approach fosters the continued use of SA and will go a long way in 

serving as a useful tool in load dispatch centres.  
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