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ABSTRACT

Elliptic Curve Cryptography (ECC) fits well for an efficient and
secure encryption scheme. It is efficient than the ubiquitous RSA
based schemes because ECC utilizes smaller key sizes for
equivalent security. This feature of ECC enables it to be applied
to Wireless networks where there are constraints related to
memory and computational power. The goal of this research is to
develop an efficient method for Scalar Multiplication and to
develop simple and efficient encryption scheme. In this paper we
have compared the security of Elliptic curve AES (ECAES) with
the Encryption scheme proposed by us. A comparative study of
ECC with RSA is made in terms of key size, computational
power, size of data files and encrypted files.

Categories and Subject Descriptors

D.4.6 [Security and Protection]:  Access controls,
Authentication, Cryptographic controls, Information flow controls

General Terms
Security
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1. INTRODUCTION

Elliptic Curve Cryptography (ECC), proposed independently in
1985 by Neal Koblitz [1] and Victor Miller [2], has been used in
cryptographic algorithms for a variety of security purposes such as
key exchange and digital signatures. Compared to traditional
integer-based public-key algorithms, ECC algorithms can achieve
the same level of security with much shorter keys. For example,
160-bit Elliptic-curve Digital Signature Algorithm (ECDSA) has a
security level equivalent to 1024-bit of Digital Signature
Algorithm (DSA). Because of the shorter key length, ECC
algorithms run faster, require less space, and consume less energy.
These advantages make ECC a better choice of public-key
cryptography, especially in resource constrained systems such as
wireless and mobile devices for pervasive computing.

There are three families of public key algorithms that have
considerable significance in current data security practice.
They are integer factorization, discrete logarithm, and elliptic
curve-based schemes. Integer factorization-based schemes such
as RSA and Discrete Logarithm-based schemes such as Diffie-
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Hellman [13] provide intuitive ways of implementation.
However, both methods admit of sub-exponential time for
cryptanalysis [14]. Solving an ECDLP (Elliptic curve Discrete
Logarithm Problem) takes full exponential time using pollard-rho
method.

The most extended encryption/decryption scheme based on ECC
is ECIES, proposed by Abdullah, Bellare and Rogaway in 1998
[2], being a variant of the EI-Gamal scheme. ECIES can be found
at ANSI X9.63, ISO/EC 15946-3 and IEEE 1363 standards.
Comparison of ECC and RSA shows that security of ECC grows
exponentially in its parameters, whereas the security of RSA
grows only sub exponentially in its parameters from

[51[6][71[8][0][20].

Since shorter key lengths translate into faster handshaking
protocols, ECC is becoming increasingly important for wireless
communications. [Source: Hank van Tilborg, NAW, 2001]. In
wireless conditions, the equipment's resources like power,
memory and computational capacity are limited. So the encryption
scheme employed in it must consume limited resources. Most
popular algorithms like RSA do not satisfy this. A comparison
between ECC and RSA is shown in Table 1[1],[6]. It is clearly
evident that ECC based Encryption/Decryption schemes are
efficient in achieving security of applications that run on memory
constrained

Table 1-Comparison of Key Sizes of RSA/DSA with ECC of
Equal Security

Time to break | RSA/IDSA | ECC RSA/ECC

in MIPS years Key Size Key Size Key Size
Ratio

10* 512 106 5:1

108 768 132 6:1

10t 1024 160 7:1

10% 2048 210 10:1

107 21,000 600 35:1

Measured performance of public-key algorithms [4].
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Table 2-Speed Up Ratio of ECC over RSA

ECC- RSA- ECC- RSA-
160 1024 224 2048

Operations/ | 271.3 114.3 195.5 17.8
sec

Speed up 24:1 11:1

Doubling an RSA or an ECC key size multiplies the processing
time by 8. The Application domain, that motivated our research,
was the implementation of an Encryption Scheme that can utilize
the Keys generated using Elliptic Curves, and also that offers
higher level of security with simple operations. In this paper, we
have proposed an Encryption Scheme based on Multiplication
with the same EI-Gamal Scheme of key computation. Besides
constructing an Efficient Encryption Scheme, we have also
suggested a Scalar Multiplication scheme, which has reduced
number of Point Additions. Though multiple base Scalar
Multiplications have already been proposed[15], we have
presented a single base Scalar Multiplication scheme, where the
base will be power of 2 and we have also provided an expression
for choosing an optimal base for having least number of point
Additions.

2. PRELIMINARIES
In this section, we take a look at the basic concepts of Elliptic
Ccurves.

Let F, be a prime finite field so that p is an odd prime number, and
let a,b € F, .Then a,b satisfy

4a° + 27 b? (mod p) # 0.

Then an elliptic curve E(F,) over F, defined by the parameters a,b
€ F, consists of the set of solutions or points P= (x,y) for x,y € F,
to the equation:

E: y? (mod p) =(x*+ax+b) (mod p)

together with an extra point O called the point at infinity. The
equation

y? (mod p) =(x3+ax+b) (mod p)

is called the defining equation of E(F,). For a given point P=
(Xp,Yp), Xp is called the x-coordinate of P,and y; is called the y-
coordinate of P.

The number of points on E(F;) is denoted by # E(F;).The Hasse
Theorem states that

p+1-2\p < #E(F,) < p+1+2\p
2.1 Notations
The Notations given below are used throughout the paper:

Fo : Prime field for the prime number p.

E : Anon-super singular Elliptic Curve with a set of points
(x,y) in the prime field F,.

a,b : Curve Parameters satisfying the equation
n : Bitsize of the Keys.

P : Base point.
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k  : Alarge prime of the order of p and k<p. This is the
Private Key.

Q : The Public Key computed from k & P.
SK' : Session Key.
r  :Randomly chosen number of Bit Size n.

R  : An Elliptic Curve point satisfying the equation of the curve
and it is computed as R=rP.

D : Session Key Computed at Decryption End

2.2 Elliptic Curve Arithmetic

2.2.1 Adding two distinct points P and Q

Consider the point P(x,,y,) that belongs to the Elliptic Curve
E.The negative of the point P is -P(x,-y).Take another point
Q(Xq.Yq)-P+Q=R , where R=(X..y) ,

where Xy, are computed as follows

S=( Yp- yol( Xp - Xr)
%=( S*Xy-Xg) (Mod p)

Y= ('Yp"'S*(Xp'Xr)) (mod p)

2.2.2 Doubling the point P
Given P(xy) and if y is not zero ,then we calculate R=2P as
follows.
S=((3x*+a)/2y,) (mod p)
X, =(S%2x,) (mod p)
Yr=(‘Yp+ S*(Xp'xr)) (mod p)

2.3 Scalar Multiplication

We use the following Algorithm for faster Field Multiplications.
Let P(x, y) be a point that belongs to the Elliptic Curve E..We
wish to multiply this with a large prime , k. Let n be the bit-
length of the k. Then, k can be represented as follows:

K=k *2™ +K o * 2" 24k %234 kg 24K, with kK™1=1,
Algorithm :
1. SetQ<P

2. Fori=n-2to0do

Q<2Q
If k=1 then
Q—Q+P
End if
End for

3. ReturnQ
The Running time for this Algorithm is log,n, where n is the bit
length of the prime k.

2.4 Proposed Scalar Multiplication

For performing Scalar Multiplication over a point P with a
number k, with base 2 would make n-Point Doublings and j-Point
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Additions, where j is the number of set bits in the bitwise
representation of the number k. At the worst case this method
requires n-1 doublings and n-1 additions.

In this section we have proposed a Scalar Multiplication scheme
that will reduce the No. of Point Additions for the same No. of
Point doublings. Here, we represent the Number k, with another
base instead of the Binary representation (Base 2 representation).

Now, we represent the Number k, with the new Base b, where
b=29, where g is an integer.

S0, K= rpg*b™ Hr % b2, g b3 b
Where r;’s are the coefficients in the New Base. So here, the

values of r; can take values that vary from 0 to 2%-1.Now the
Algorithm is rewritten as follows:

Algorithm:

1. Precompute uP where u ranges from 2 to 29-1
2. Assign Q<r, 4P
3. Fori=n-2to 0 do.

Q<bQ  (b=2°).
If (ri#0)
QQ+rP
End If
End for
4. Return Q.

For computing Q in this key, an optimal value for g has been
formulated, so that the Scalar Multiplication results in least No. of
Additions, with the Precomputations taken into consideration. Let
the Key-Size be n. The optimal value for g is ,

g=ceil( logy(n)/2)
This formula works only for values of n upto 1024.Generalizing
the above algorithm,

my, : denotes the total number of bit or bit length in the proposed
base b.

Therefore, my=n/g (b=29).
T(b) :Denotes the time complexity for computing the Public key
with the New base, b , where b=29

A; : Denotes Time Complexity for Point Addition Operation.
D; : Denotes Time Complexity for Point Doubling Operation.
Then,
T(b)= ( ceil(n/g) - 1)gD; + (ceil(n/g) — 1) A+(2%-1)A,

For Eg. Let the bit size be 128.

g=ceil(7/2)=4 => g=4

So No. of Additions = ((2*-1)+128/4)=47

If g is chosen to be 5, then

No. of Additions=ceil((2°-1)+128/5)=57

Similarly, for n=512 , g=ceil(9/2)=5
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So , No. of Additions=ceil((2%-1)+512/5)=134
If we randomly choose the base value to be 2° or g=6 , then
No. of Additions=ceil( (25-1) +512/6)=149

So, from these we conclude that g=ceil( log,(n) / 2 ) ,proves to
compute a base that would yield least No. of Point Additions.
Whereas, if we follow the method specified in section 2.3 will
make j point Additions, where j is the No. of Set Bits in the
Private Key,k.

3. PROPOSED ENCRYPTION AND
DECRYPTION SCHEME
3.1 Mathematical Concept of Encryption and

Decryption
Consider a Prime Number p, another number m and e where e<p
and m<p.Then,

m*e = ¢ (mod p) @)
where ¢ is the remainder obtained by multiplying m & e and with
respect to prime p.
We find number d , such that :
e*d = 1(mod p) )

The above operation is accomplished using Extended Euclidean
Algorithm. Finally m is recovered as follows:

d*c = m (mod p) 3)
So the actual operation
c=(m*e) mod (p)
d*c (mod p)= d*(m*e)=(m*1)=m (mod p)
m is recovered in this way. d is computed using Extended
Euclidean Algorithm.

(1) is the Encryption Operation and (3) is the Decryption
Operation.

3.2 Operations With the Keys

We compute SK as SK=rQ. SK has two components that are the
x-co-ordinate and the y-co-ordinate. SK represents the session key
that represents the Key, with which data is actually encrypted.

3.3 Encryption

Let the Bit Size of the key be n .The Block Size of the Message to
be encrypted will be of size n. The Block of message is
represented as an n-bit number by simply concatenating the Base-
2 representation of each character in the message.

3.31 Step1l

We choose a message block m of Size n. The x-co-ordinate of SK
becomes the Encryption Key and in this step, we accomplish the
modular operation with respect to the Private-Key k. The
remainder generated is tempc.

m * (SK.x) = tempc (mod k)
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3.3.2 Step 2

Here we multiply tempc generated in stepl with the
corresponding y-co-ordinate of Session Key,SK with which
Encryption was performed with it’s x-co-ordinate in Stepl. This
operation is done with respect to the Field Prime p. The remainder
obtained in this step forms the final Cipher Text. This is denoted
by c.

tempc * (SK.y) = ¢ (mod p)

Reason for using k is that, we don’t introduce a new variable into
the Encryption process and so the overhead in transferring Secret
components reduces, since the Private Key is directly involved in

Key Generation and in Encryption, Decryption Processes.Finally,
R is appended to the Cipher Text.

3.4 Decryption

We have used the EI-Gamal Scheme for Session Key Generation.
After receiving the secret-key, we perform scalar multiplication to
compute D=kR, where R is retrieved from the Cipher Text, to
which it was appended during encryption.

But R=rP.
So, D=krP.

During Encryption, we computed SK as SK=rQ, where Q is the
public-key. But Q=kP.

So, SK=rkP=krP=D.

So, SK is recomputed as D here and the same is used for
decryption.

34.1 Stepl

The Size of the Block remains the same, n. Represent this block of
data as a n-bit number, ¢ and Multiply it with the corresponding
Decryption key d; , where

d;*D.y = 1(mod p)

since this operation was performed last during Encryption
Operation. This is done with respect to the Field Prime p. The
remainder generated is tempc.

¢*d;= tempc (mod p)

3.4.2 Step2
Here we multiply tempc generated in stepl with the
corresponding decryption key for step2 ,d, , where

d,*D.x = 1(mod p)

This operation is done with respect to the Secret-Key k. The
Remainder obtained is the original message. Thus the original m
is recovered.If private Key, k<p

tempc* d, = ¢ (mod k)
If private Key, k>p
(tempc+p)* d, = ¢ (mod k)

The Remainder obtained is the original message. Thus the original
m is recovered.
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4. SECUTITY

4.1 Security of ECC

The best known attack for Elliptic Curve Cryptography is the
Pollard-Rho Attack. For a given key size of n bits, the time taken
to solve the ECDLP is given by the formula

t=-/ M /2 where m=2"

So for a 128 bit key, the time taken solve the ECDLP on 10*
Computers, processing at the Rate of 10* keys/s for each
computer, it will take about 10* years to compute the Secret key k.

ECDLP was solved for a 109-bit Key with the help of 10000
computers and it took about 549 days to solve it on P-4
Computers using Pollard-Rho Method.[13]

Other methods such as Baby-Giant Step exit, but are not much
efficient than the Pollard-Rho Attack.

4.2 Security of Encryption/Decryption

Operations

If a hacker wishes to perform Cipher Text Only Attack (Methods
other than ECDLP) with the public key components through the
Encrypted data, then there are two possible ways to hack:

4.2.1 Using Factorization

p is our Field prime and let ¢ be a block of data that a hacker
wishes to hack. a,b,p are Numbers of the same bit-size w and p is
a prime greater than a and b. Then,

a*b=c (mod p) ,

Only ¢ and p are known to the hacker. So the only way to hack
this is to form a number of this form,i.e.
h=(p*x+c) where x varies from 1 to 2. For every of h , formed in
this way, has to be factorized into a & b respectively which is
another tedious operation. .
For a 128-bit Encryption Scheme, the time complexity to crack
this Scheme would require

t=2"2%*(complexity to factorize every value of h)
Which shows that t >2'%

In spite of finding, the y-coordinate of Session Key, the hacker
has to find the corresponding x-coordinate(In Elliptic Curve
Arithmetic, same more than one point can have the same y-
coordinate.) and also the Private Key. This is a very tedious task
and such an approach will fail

4.2.2 Using Brute force Attack on Private Key

Other than the factorization scheme said above, a hacker can
perform a Brute force attack on the private key, k. For every value
of k, the hacker will have to find the co-ordinates of the Session
Key. So the time complexity involved would be,

t=21%8*(complexity to compute SK for every value of k)

Thus, this Encryption Scheme proves to be Secure & Efficient
than AES, that offers maximum security among the Private Key
Cryptographic Algorithms ,and hence much Secure & Efficient
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than ECAES in terms of the Encryption scheme . As a whole, it
proves to be a secure Encryption scheme than RSA.

5. SIMULATION RESULTS

We compared the Modified version of Scalar Multiplication with
the Scalar Multiplication performed with Base 2 for Bit Sizes of
128,160,192,256.Fig.1 represents this comparison.

SM in Fig. 1 denotes Scalar Multiplication and Mod SM denotes
the proposed Scalar Multiplication. Time is expressed in ps.

45000
4030
1 LILE)
A0
25000

200K
15400
1000
SO0 -
o
123 150 192 50

Figure 1. Comparison of Scalar Multiplication with base 2 and with base
29

Finally, we compared RSA-768 with MECES-128, since both
offer equal security. We found that, MECES is far efficient than
RSA in Encryption and Decryption, since RSA involves
Exponentiation, whereas MECES involves only Multiplication.
Fig. 2 shows the comparison between RSA and

m T i us Shd

W i ir us Rded SM1

MECES for time taken to encrypt 1 KB of data.

250000

200000
150000 = Time in us RSA
100000
®mTimeinus
50000 MECES
o
1 2 3

Figure 2 .Comparison of time taken to encrypt data, RSA & ECC .

Fig.3 compares the RSA and MECES for the time taken to
decrypt 1KB of data, previously encrypted by itself.

250000
200000
150000 ®Time in us RSA
100000
®mTimeinus
50000 MECES
o
1 2 3
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Figure 3 .Comparison of time taken to decrypt data , RSA & ECC .

6. CONCLUSION

1. Since the Encryption Scheme is secure, any hacker will
be forced to solve the Elliptic Curve Discrete Logarithm Problem.

2. The Encryption Scheme is based on multiplication. So,
it can be applied to constrained Systems like Wireless Devices,
Mobile Phones etc.

3. Use of Multiplication, makes it FPGA implementable.

4, Since the time required to compute the keys is less,
Timing based attacks on the Key will be difficult.

5. The Encryption Process involves two stages of Modular
Multiplication. Hence Known Plain Text Attack will also be
difficult, since the Number of unknown variables involved in the
encryption are more. (Private Key and the Session Key Co-
ordinates).
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