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ABSTRACT 

Elliptic Curve Cryptography (ECC) fits well for an efficient and 

secure encryption scheme. It is efficient than the ubiquitous RSA 

based schemes because ECC utilizes smaller key sizes for 

equivalent security. This feature of ECC enables it to be applied 

to Wireless networks where there are constraints related to 

memory and computational power. The goal of this research is to 

develop an efficient method for Scalar Multiplication and to 

develop simple and efficient encryption scheme. In this paper we 

have compared the security of Elliptic curve AES (ECAES) with 

the Encryption scheme proposed by us. A comparative study of 

ECC with RSA is made in terms of key size, computational 

power, size of data files and encrypted files. 

Categories and Subject Descriptors 

D.4.6 [Security and Protection]: Access controls, 

Authentication, Cryptographic controls, Information flow controls 

General Terms 

Security 

Keywords 

Elliptic Curve Cryptography, Security 

1. INTRODUCTION 
Elliptic Curve Cryptography (ECC), proposed independently in 

1985 by Neal Koblitz [1] and Victor Miller [2], has been used in 

cryptographic algorithms for a variety of security purposes such as 

key exchange and digital signatures. Compared to traditional 

integer-based public-key algorithms, ECC algorithms can achieve 

the same level of security with much shorter keys. For example, 

160-bit Elliptic-curve Digital Signature Algorithm (ECDSA) has a 

security level equivalent to 1024-bit of Digital Signature 

Algorithm (DSA). Because of the shorter key length, ECC 

algorithms run faster, require less space, and consume less energy. 

These advantages make ECC a better choice of public-key 

cryptography, especially in resource constrained systems such as 

wireless and mobile devices for pervasive computing.   

There  are  three  families of  public  key  algorithms that  have  

considerable  significance  in  current  data security  practice.  

They are integer factorization, discrete logarithm, and elliptic 

curve-based schemes. Integer  factorization-based  schemes  such  

as RSA  and  Discrete  Logarithm-based  schemes  such  as Diffie-

Hellman  [13]  provide  intuitive  ways  of implementation.  

However, both methods admit of sub-exponential time for 

cryptanalysis [14]. Solving an ECDLP (Elliptic curve Discrete 

Logarithm Problem) takes full exponential time using pollard-rho 

method. 

The most extended encryption/decryption scheme based on ECC 

is ECIES, proposed by Abdullah, Bellare and Rogaway in 1998 

[2], being a variant of the El-Gamal scheme. ECIES can be found 

at ANSI X9.63, ISO/EC 15946-3 and IEEE 1363 standards. 

Comparison of ECC and RSA shows that security of ECC grows 

exponentially in its parameters, whereas the security of RSA 

grows only sub exponentially in its parameters from 

[5][6][7][8][9][10]. 

Since shorter key lengths translate into faster handshaking 

protocols, ECC is becoming increasingly important for wireless 

communications. [Source: Hank van Tilborg, NAW, 2001]. In 

wireless conditions, the equipment's resources like power, 

memory and computational capacity are limited. So the encryption 

scheme employed in it must consume limited resources. Most 

popular algorithms like RSA do not satisfy this. A comparison 

between ECC and RSA is shown in Table 1[1],[6]. It is clearly 

evident that ECC based Encryption/Decryption schemes are 

efficient in achieving security of applications that run on memory 

constrained 

Table 1-Comparison of Key Sizes of RSA/DSA with ECC of 

Equal Security 

Time to break 

in MIPS years 

RSA/DSA 

Key Size 

ECC 

Key Size 

RSA/ECC 

Key Size 

Ratio 

104 512 106 5:1 

108 768 132 6:1 

1011 1024 160 7:1 

1020 2048 210 10:1 

1078 21,000 600 35:1 

 

Measured performance of public-key algorithms [4]. 
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Table 2-Speed Up Ratio of ECC over RSA  

 ECC-

160 

RSA-

1024 

ECC-

224 

RSA-

2048 

Operations/  

sec 

271.3 114.3 195.5 17.8 

Speed up        2.4:1                                        11:1 

Doubling an RSA or an ECC key size multiplies the processing 

time by 8. The Application domain, that motivated our research, 

was the implementation of an Encryption Scheme that can utilize 

the Keys generated using Elliptic Curves, and also that offers 

higher level of security with simple operations. In this paper, we 

have proposed an Encryption Scheme based on Multiplication 

with the same El-Gamal Scheme of key computation. Besides 

constructing an Efficient Encryption Scheme, we have also 

suggested a Scalar Multiplication scheme, which has reduced 

number of Point Additions. Though multiple base Scalar 

Multiplications have already been proposed[15], we have 

presented a single base Scalar Multiplication scheme, where the 

base will be power of 2 and we have also provided an expression 

for choosing an optimal base for having least number of point 

Additions. 

2. PRELIMINARIES 
In this section, we take a look at the basic concepts of Elliptic 

curves. 

Let Fp be a prime finite field so that p is an odd prime number, and 

let a,b € Fp .Then a,b satisfy  

4a3 + 27 b2 (mod p) ≠ 0. 

Then an elliptic curve E(Fp) over Fp defined by the parameters a,b 

€ Fp consists of the set of solutions or points P= (x,y) for x,y € Fp 

to the equation: 

E:  y2 (mod p) =(x3+ax+b) (mod p) 

together with an extra point O called the point at infinity. The 

equation  

y2 (mod p) =(x3+ax+b) (mod p) 

is called the defining equation of E(Fp). For a given point P= 

(xP,yP), xP is called the x-coordinate of P,and yP is called the y-

coordinate of P.  

The number of points on E(Fp) is denoted by # E(Fp).The Hasse 

Theorem states that 

p+1-2√p  ≤  # E(Fp)  ≤   p+1+2√p 

2.1 Notations 
The Notations given below are used throughout the paper:                                                           

Fp     : Prime field for the prime number p.          

E     : A non-super singular Elliptic Curve with a  set of points 

(x,y) in the prime field Fp.                                      

a,b   : Curve Parameters satisfying the equation   

n      : Bit size of the Keys.                              

P      : Base point.                                             

k      : A large prime of the order of p and k<p. This is the    

Private Key.                                               

Q     : The Public Key computed from k & P.    

SK   : Session Key.                                                            

r      :Randomly chosen number of Bit Size n.                              

R      : An Elliptic Curve point satisfying the equation of the curve 

and it is computed as R=rP.     

D      : Session Key Computed at Decryption End                   

2.2 Elliptic Curve Arithmetic 

2.2.1  Adding two distinct points P and Q 
Consider the point P(xp,yp) that belongs to the Elliptic Curve 

E.The negative of the point P is -P(x,-y).Take another point 

Q(xq,yq).P+Q=R , where R=(xr,yr) ,  

where xr,yr are computed as follows 

S=( yp - yr)/( xp - xr) 

xr=( S2-xp-xq) (mod p) 

yr=(-yp+S*(xp-xr)) (mod p) 

2.2.2 Doubling the point P  
Given P(x,y) and if y is not zero ,then we calculate R=2P as 

follows. 

S=((3x2+a)/2yp) (mod p) 

Xr=(S2-2xp) (mod p) 

Yr=(-yp+ S*(xp-xr)) (mod p) 

2.3 Scalar Multiplication 
We use the following Algorithm for faster Field Multiplications. 

Let P(x, y) be a point that belongs to the Elliptic Curve E..We 

wish to multiply this with  a large prime , k. Let n be the bit-

length of the k. Then, k can be represented as follows: 

K=kn-1*2n-1 +kn-2*2n-2+kn-3*2n-3+…+k1*2+k0 with kn-1=1. 

Algorithm :  

1. Set Q←P 

2. For i=n-2 to 0 do 

                           Q←2Q 

                            If ki=1 then 

                                     Q←Q+P 

                           End if 

                End for 

3. Return Q 

The Running time for this Algorithm is log2n, where n is the bit 

length of the prime k. 

2.4 Proposed Scalar Multiplication 
For performing Scalar Multiplication over a point P with a 

number k, with base 2 would make n-Point Doublings and j-Point 
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Additions, where j is the number of set bits in the bitwise 

representation of the number k. At the worst case this method 

requires n-1 doublings and n-1 additions. 

In this section we have proposed a Scalar Multiplication scheme 

that will reduce the No. of Point Additions for the same No. of 

Point doublings. Here, we represent the Number k, with another 

base instead of the Binary representation (Base 2 representation).  

Now, we represent the Number k, with the new Base b, where 

b=2g, where g is an integer. 

So,     k= rn-1*bn-1 +rn-2*bn-2+rn-3*bn-3+…+r1*b+r0    

Where ri’s are the coefficients in the New Base. So here, the 

values of ri can take values that vary from 0 to 2g-1.Now the 

Algorithm is rewritten as follows: 

Algorithm: 

1. Precompute uP where u ranges from 2 to 2g-1                                                                          

2. Assign Q←rn-1P        

3. For i=n-2 to 0 do. 

                              Q←bQ     (b=2g).   

                                If ( ri ≠ 0)        

                                        Q←Q+riP         

                               End If            

                End for 

4. Return Q. 

For computing Q in this key, an optimal value for g has been 

formulated, so that the Scalar Multiplication results in least No. of 

Additions, with the Precomputations taken into consideration. Let 

the Key-Size be n. The optimal value for g is ,  

g=ceil( log2(n) / 2 ) 

This formula works only for values of n upto 1024.Generalizing 

the above algorithm, 

mb : denotes the total number of bit or bit length in the proposed  

base b. 

Therefore, mb=n/g (b=2g).                                                                                                                                                                                                        

T(b) :Denotes the time complexity for computing the Public key 

with the New base, b , where b=2g         

At    : Denotes Time Complexity for Point Addition Operation. 

Dt    : Denotes Time Complexity for Point Doubling Operation. 

Then, 

T(b)= ( ceil(n/g) - 1 )gDt + (ceil(n/g) – 1) At+(2g-1)At 

For Eg. Let the bit size be 128.  

             g=ceil(7/2)=4 => g=4 

             So No. of Additions = ((24-1)+128/4)=47 

             If g is chosen to be 5, then 

             No. of Additions=ceil((25-1)+128/5)=57 

             Similarly, for n=512   ,            g=ceil(9/2)=5 

            So , No. of Additions=ceil((25-1)+512/5)=134 

          If we randomly choose the base value to be 26 or g=6 , then 

            No. of Additions=ceil( (26-1) +512/6)=149  

So, from these we conclude that g=ceil( log2(n) / 2 ) ,proves to 

compute a base that would yield least No. of Point Additions. 

Whereas, if we follow the method specified in section 2.3 will 

make j point Additions, where j is the No. of Set Bits in the 

Private Key,k.  

3. PROPOSED ENCRYPTION AND   

DECRYPTION SCHEME 

3.1 Mathematical Concept of Encryption and 

Decryption 
Consider a Prime Number p, another number m and e where e<p 

and m<p.Then, 

                              m*e  c (mod p)                           (1) 

where c is the remainder obtained by multiplying m & e and with 

respect to prime p. 

We find number d , such that : 

                             e*d  1(mod p)                        (2) 

The above operation is accomplished using Extended Euclidean 

Algorithm. Finally m is recovered as follows: 

                            d*c  m (mod p)                       (3) 

So the actual operation 

c=(m*e) mod (p) 

d*c (mod p)= d*(m*e)=(m*1)=m (mod p) 

m is recovered in this way. d is computed using Extended 

Euclidean Algorithm. 

 (1) is the Encryption Operation and (3) is the Decryption 

Operation. 

3.2 Operations With the Keys 
We compute SK as SK=rQ. SK has two components that are the 

x-co-ordinate and the y-co-ordinate. SK represents the session key  

that represents the Key, with which data is actually encrypted. 

3.3 Encryption 
Let the Bit Size of the key be n .The Block Size of the Message to 

be encrypted will be of size n. The Block of message is 

represented as an n-bit number by simply concatenating the  Base-

2 representation of each character in the message. 

3.3.1 Step 1  
We choose a message block m of Size n. The x-co-ordinate of SK 

becomes the Encryption Key and in this step, we accomplish the 

modular operation with respect to the Private-Key k. The 

remainder generated is tempc. 

m * (SK.x)  tempc (mod k) 
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3.3.2 Step 2  
Here we multiply tempc generated in step1 with the 

corresponding y-co-ordinate of Session Key,SK with which 

Encryption was performed with it’s x-co-ordinate in Step1. This 

operation is done with respect to the Field Prime p. The remainder 

obtained in this step forms the final Cipher Text. This is denoted 

by c. 

tempc * (SK.y) 
 
c (mod p) 

Reason for using k is that, we don’t introduce a new variable into 

the Encryption process and so the overhead in transferring Secret 

components reduces, since the Private Key is directly involved in 

Key Generation and in Encryption, Decryption Processes.Finally, 

R is appended to the Cipher Text. 

3.4 Decryption 
We have used the El-Gamal Scheme for Session Key Generation. 

After receiving the secret-key, we perform scalar multiplication to 

compute D=kR, where R is retrieved from the Cipher Text, to 

which it was appended during encryption. 

But                                           R=rP. 

So,                                          D=krP. 

During Encryption, we computed SK as SK=rQ, where Q is the 

public-key. But Q=kP. 

So ,                                 SK=rkP=krP=D. 

So, SK is recomputed as D here and the same is used for 

decryption. 

3.4.1 Step 1  
The Size of the Block remains the same, n. Represent this block of 

data as a n-bit number, c and Multiply it with the corresponding 

Decryption key d1 , where 

d1*D.y  1(mod p) 

 since this operation was performed last during Encryption 

Operation. This is done with respect to the Field Prime p. The 

remainder generated is tempc. 

c*d1  tempc (mod p) 

3.4.2 Step 2 
Here we multiply tempc generated in step1 with the 

corresponding decryption key for step2 ,d2 , where 

d2*D.x  1(mod p) 

This operation is done with respect to the Secret-Key k. The 

Remainder obtained is the original message. Thus the original m 

is recovered.If private Key, k<p 

tempc* d2  c (mod k) 

If private Key, k>p 

(tempc+p)* d2  c (mod k) 

The Remainder obtained is the original message. Thus the original 

m is recovered.  

4. SECUTITY 

4.1 Security of ECC 
The best known attack for Elliptic Curve Cryptography is the 

Pollard-Rho Attack. For a given key size of n bits, the time taken 

to solve the ECDLP is given by the formula 

                                   t=      , where m=2
n
 

So for a 128 bit key, the time taken solve the ECDLP on 104 

Computers, processing at the Rate of 104 keys/s for each 

computer, it will take about 104 years to compute the Secret key k. 

ECDLP was solved for a 109-bit Key with the help of 10000 

computers and it took about 549 days to solve it on P-4 

Computers using Pollard-Rho Method.[13] 

Other methods such as Baby-Giant Step exit, but are not much 

efficient than the Pollard-Rho Attack. 

4.2 Security of Encryption/Decryption                                    

Operations 
If a hacker wishes to perform Cipher Text Only Attack (Methods 

other than ECDLP) with the public key components through the 

Encrypted data, then there are two possible ways to hack: 

4.2.1 Using Factorization 
p is our Field prime and let c be a block of data that a hacker 

wishes to hack. a,b,p are Numbers of the same bit-size w and p is 

a prime greater than a and b. Then, 

a*b  c (mod p) , 

Only c and p are known to the hacker. So the only way to hack 

this is to form a number of this form,i.e.                                                         

h=(p*x+c) where x varies from 1 to 2w. For every of h , formed in 

this way, has to be factorized into a & b respectively which is 

another tedious operation.                            .                                                      

For a 128-bit Encryption Scheme, the time complexity to crack 

this Scheme would require  

t=2128*(complexity to factorize every value of h) 

Which shows that t >2128 .  

In spite of finding, the y-coordinate of Session Key, the hacker 

has to find the corresponding x-coordinate(In Elliptic Curve 

Arithmetic, same more than one point can have the same y-

coordinate.) and also the Private Key. This is a very tedious task 

and such an approach will fail 

4.2.2 Using Brute force Attack on Private Key 
Other than the factorization scheme said above, a hacker can 

perform a Brute force attack on the private key, k. For every value 

of k, the hacker will have to find the co-ordinates of the Session 

Key. So the time complexity involved would be, 

   t=2128*(complexity to compute SK for every value of k) 

Thus, this Encryption Scheme proves to be Secure & Efficient  

than AES, that offers maximum security among the Private Key 

Cryptographic Algorithms ,and hence much Secure & Efficient 
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than ECAES in terms of the Encryption scheme . As a whole, it 

proves to be a secure Encryption scheme than RSA.  

5. SIMULATION RESULTS 
 We compared the Modified version of Scalar Multiplication with 

the Scalar Multiplication performed with Base 2 for Bit Sizes of 

128,160,192,256.Fig.1 represents this comparison. 

SM in Fig. 1 denotes Scalar Multiplication and Mod SM denotes 

the proposed Scalar Multiplication. Time is expressed in µs. 

 

Figure 1. Comparison of Scalar Multiplication with base 2  and with base 

2g 

Finally, we compared RSA-768 with MECES-128, since both 

offer equal security. We found that, MECES is far efficient than 

RSA in Encryption and Decryption, since RSA involves 

Exponentiation, whereas MECES involves only Multiplication. 

Fig. 2 shows the comparison between RSA and  

MECES for time taken to encrypt 1 KB of data. 

 

Figure 2 .Comparison of time taken to encrypt data , RSA & ECC . 

Fig.3 compares the RSA and MECES for the time taken to 

decrypt 1KB of data, previously encrypted by itself. 

 

Figure 3 .Comparison of time taken to decrypt data , RSA & ECC . 

6. CONCLUSION 

1. Since the Encryption Scheme is secure, any hacker will 

be forced to solve the Elliptic Curve Discrete Logarithm Problem. 

2. The Encryption Scheme is based on multiplication. So, 

it can be applied to constrained Systems like Wireless Devices, 

Mobile Phones etc. 

3. Use of Multiplication, makes it FPGA implementable. 

4. Since the time required to compute the keys is less, 

Timing based attacks on the Key will be difficult. 

5. The Encryption Process involves two stages of Modular 

Multiplication. Hence Known Plain Text Attack will also be 

difficult, since the Number of unknown variables involved in the 

encryption are more. (Private Key and the Session Key Co-

ordinates). 
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