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Abstract: In this paper we describe Cryptography by using
Karatsuba multipliers and ASCII codes implementing through
coordinate geometry for data encryption and decryption with its
code in matlab. Elliptic curve cryptography is an asymmetric key
cryptography. It includes (i) public key generation on the elliptic
curve and its declaration for data encryption and (ii) private key
generation and its use in data decryption depended on the points
on two dimensional elliptical curve. We also discuss the
implementation of ECC on binary field. An overview of ECC
implementation on two dimensional representation of ASCII
codes with coordinate systems and data encryption through
Elgamal Encryption technique has been discussed. Karatsuba
multiplier is a fast process to solve the Elliptic curve
cryptography problems. Here we have applied Karatsuba
multiplier for point multiplication. Much attention has been given
on the mathematical implementation of elliptic curves through
Karatsuba multiplier. For cryptographic purposes, specifically
results of the group formed by an elliptic curve over a finite field

E(Fzm), and showing how this can form public key cryptographic

systems for use in both encryption and key exchange. Finally we
describe how to encrypt and decrypt the data with the ASCII
codes through Karatsuba multiplier and its implimentation
through matlab.

Categories and Subject Descriptors
E.3.[Data Encryption]: Public key cryptosystems,Elliptic curve
cryptography,Karatsuba multiplication,ASCI|I table.

General Terms:Algorithm,Security,field

Keywords: Cryptography,Field,Encryption,Decryption, ASCII.

1.INTRODUCTION

In ECC a 160-bit key provides the same security as compared
to the traditional crypto system RSA[6] with a 1024-bit key,
thus lowers the computer power. Therefore,ECC offers
considerably greater security for a given key size.Consequently, a
key with smaller size makes it possible a much more compact
implementations for a given level of security,

which means faster cryptographic operations, running on smaller
chips or more compact software. After using Karatsuba multiplier
(multiplication and addition) [2]fastest cryptographic operational
speed should be gained. Further, there are extremely efficient,
compact hardware implementations are available for ECC
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exponentiation operations, offering potential reductions in
implementation footprint even beyond those due to the smaller
key length alone. Elliptic curve cryptography is not only emerged
as an attractive public key crypto-system for mobile/wireless
environments but also provides bandwidth savings. The use of
elliptic curve in cryptography was proposed by Miller and
Koblitz. Elliptic curve cryptography is not easy to understand by
attacker. So not easy to break. The choice of the type of elliptic
curve is dependent on its domain parameters, the finite field
representation, elliptic curve algorithms for field arithmetic[4] as
well as elliptic curve arithmetic. The optimum selection of these
parameters also depends on the security conditions under
consideration. There are several research papers in this subject
available in the literature covering different areas like hardware
and software implementations. In the above respect it can be
mentioned here that one can define encryption points as g; and g
by a specified algorithm but it is not yet possible for the case of
plain text. In this paper we have discussed about the encryption

and decryption with Elliptical curves E(Fzm) and an attempt has

been made to represent plaintext in two dimensional form with
the help of an ASCII code table so that Elgamal encryption
technique[9] can be used for the said ECC. Karatsuba
multiplication methods have been used for less complexity and
fast process. It can be mentioned here that ECC produces both
private key and public key. Private key is known as secret key.
In symmetric key cryptography single key uses for both
encryption and decryption. In asymmetric key algorithm it
however uses only for decryption of encrypted message. In
asymmetric key cryptography, public key is used for message
encryption and widely distributed for public. Elliptic curve
cryptography is asymmetric key cryptography by nature. For the
completeness of the paper, the description and use of the elliptic
curves with Karatsuba multiplier[2][3] and ASCII codes is given
in few of the subsequent section. In section 6 we describe the
methodology of encryption for plaintext followed by conclusion
in the last section and in section 7 coding in matlab.
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bsa [0 0 0 |0 ]0 |0 OO
bs [0 0 0 |0 |1 |1 |1 |1
b, [0 0 1 [1]o]o |11
by [0 1 0 |10 |1 |0 |1
bs | bs | by | by 0 1 2 |34 |5 |6 |7
0 |0 |0 |0 |0 |NUL |[DLE [SP |0 |@]|P |° |p
0 |0 |0 |1 |1 |[SOH |DCI [I |1 |A|Q |a |q
0 |0 |1]0 |2 [sTXx [DC2 [~ [2 [B|R |b |r
0 |0 [1 |1 [3 [ETX |DC3 [# [3 [C S |c |s
0 |1 0|0 |4 |EOT |DC4 [$ |4 |D|T |d |t
0 |1 |0 |1 |5 |EQN |[NAK |% |5 |E |U |e |u
0 |1 |1]0 |6 |ACK [SYN [& [6 |F |V |f |v
0 |1 |1 |1 |7 |BEL |ETB |* |7 |G |W]|g |w
1 (0]0]0 |8 |[BS |CAN |( |8 |H|X |[h |x
1 (oo 1 |9 [HT [em ) o |1 [Y i |y
1 (0 [1]0 |10 |LF |suB |* |: [J [z ]j |z
10 [1 |1 |12 [vT [EsC [+ |; |[K|[ [k [{
1 (1 (00 |12 FF |FS |, < L [\ [T ]
11 ]0 |1 |13 |CR |GS = [M|[] |m]|3}
1110 [14a]s0 [RS | [>[N[~|n [~
1111111 15 sl us [/ 12 o o | DEL

(Fig-1) (ASCII table for 128 characters)

2.1ASCII codes

Before ASCII was developed, the encodings in use included 26
alphabetic characters, 10 numerical digits, and from 11 to 25
special graphic symbols. More than 64 codes were required in
ASCII. ASCIl codes (Fig-1) represent as text in computers,
communications equipment, and other devices that work with
text. Most modern character encodings which support many
more characters than did the original have a historical basis in
ASCII. ASCII[12] developed from telegraphic codes and its first
commercial use was as a seven-bit tele printer code promoted by
Bell data services. Work on ASCII formally began October 6,
1960 with the first meeting of the ASA X3.2 subcommittee. The
first edition of the standard was published in 1963, a major
revision in 1967, and the most recent update in 1986. Compared
to earlier telegraph codes, the proposed Bell code and ASCII
were both ordered for more convenient sorting (i.e.,
alphabetization) of lists, and added features for devices other than
teleprinters. Some ASCII features, including the "ESCape
sequence", were due to Robert Bemer. ASCII includes definitions
for 128 characters: 33 are non-printing, mostly obsolete control
characters that affect how text is processed; 94 are printable
characters (the space is not printable). The ASCII character
encoding or a compatible extension is used on nearly all common
computers, especially personal computers and workstations.

The representation of each and every character is with the seven
bits (b; to Dby),e.g. the representation of A s
(1000001)=65,similarly other characters are coded like this.

2.2.ASCIl table for

coordinate representation:

Input and output devices that communicate with people and the
computer are usually involved in the transfer of alphanumeric
information to and from the device and the computer.It uses
seven bits to code 128 characters shown as the above table. In
case of ASCIlI code cryptography the arrangement of the
characters are distinct from the table(Fig-1.2).According to this
each and every ASCII code have two dimensional coordinate
representation[10][11] with eight bits .That is (b, to b;) for X-
coordinate and (bs; to b;) for  Y-coordinate. Now the
representation of B is (0010,0100),and for encryption we can add
this with the point which is lying on the elliptic curve. Similarly
we can represent another characters. It’s clear that coordinate
representation is different than ASCII representation. With these
representation characters can be taken different points of elliptic
curve for data encryption with the following algorithms in
section-6.

two dimensional
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3.1Elliptic Curve Arithmetic

Elliptic curve cryptography is based on binary field
arithmetic[1]. Note that elliptic curves are not ellipses. They are
so named because of the fact that ellipses are formed by
quadratic curves. Elliptic curves are always cubic and have a
relationship to elliptic integrals in mathematics[4][5] where the
elliptic integral can be used to determine the arc length of an
ellipse. An elliptic curve in its “standard form” is described by

3

y2:x +ax+b (1)

For the polynomial x3 + ax + b, the discriminant can be given as

D =- (4a° + 2709 (12)

This discriminant must not become zero for an elliptic curve

polynomial X3+ ax + b to possess three distinct roots.If the

discriminant is zero, that would imply that two or more roots
have coalesced, giving the curves in singular form. It is not safe
to use singular curves for cryptography as they are easy to crack.
Due to this reason we generally take non-singular curves for data
encryption.

Let P(XpYp) and Q(Xq.Yq) be the two points on the curve of
Eq.(1.1).Then the point additions 7 + Q , as well as point
doubling P + P are two operations defined on elliptic curve E
which can geometrically be represented by tangent and chord
operation. By applying the point addition and doubling operation
we can multiply a scalar k with a point 2, such that kP = 9,
where k is a scalar. Given P and 9, it is computationally
infeasible to obtain k. If k is sufficiently large, k is the discrete
logarithm of Q to the base 2. Hence the main operation involved
in ECC is related to the point multiplication i.e. multiplication of
a scalar k with any point 2 on the curve to obtain another point
Q on the curve.

3.2.Elliptic Curves over F,m :
What makes the binary finite fields more convenient for hardware

implementations is that the elements of GF(Zm) can be
represented by m-bit binary code words. The addition operation

in GF(Zm) is like the XOR operation on bit fields.
Thatisx +x=0 forall x e GF2™M).

This implies that a finite field of form GF(Zm) is of characteristic
2. The equation of the elliptic curve on a binary field F2m is

y2+xy:x3+ax2+b,whereb¢0.

Here the elements of the finite field are integers of length at most
m bits. These numbers can be considered as a binary polynomial
of degree m — 1.In binary polynomial the coefficients can only be
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0 or 1.The addition of two points on a curve over is F2m defined

as
(XY + (X0.¥9) = (X3.¥3)

Where

(x3,y3) = (a2 +tat X Xy ta, a(x1+x3)+x3+yl)

Where
o = (Y1 1Y,)/ (X1 +X5)

4.1.Polynomial Arithmetic :
Elliptic curve over field F2m [7]involves arithmetic of integer of

length m bits. These numbers can be considered as binary

polynomial of degree m — 1. The binary string
(a me A ag) can be expressed as polynomial

-1
i
A(x) = > ax' = a X"ra X"+ a xia X+
i=0

%4
where 8= Oorl.
For e.g., a 4 bit number 11012 can be represented by poly-

nomial as x3 + x2 + 1.Similar to the modulus p on modular

arithmetic, there is an irreducible polynomial of degree m in
polynomial arithmetic. If in any operation the degree of
polynomial is greater than or equal to m, the result is reduced to a
degree less than m using irreducible polynomial also called as
reduction polynomial. In binary polynomial the coefficients of the
polynomial can be either 0 or 1. If in any operation the coefficient
becomes greater than 1, it can be reduced to 0 or 1 by modulo 2
operation on the coefficient. All the operations below are defined

4

in field F24 are on irreducible polynomial f(x) =x™ + x + 1. Since

m = 4 the operation involves polynomial of degree 3 or lesser.

4.2Irreducible polynomial

A polynomial [5][8] f(x) is known as to be irreducible if we
can’t write f(x)=h(x).g(x) .For any polynomials h(x) ,g(x) of
degree strictly less than the degree of f(x) . An irreducible
polynomial of degree m over F2m should satisfy these necessary

conditions.
*The constant term ag = 1

*There is an odd number (>3)of nonzero terms , otherwise ,f(x)
whose number of nonzero terms is even has a factor (x+1).

56



©2010 International Journal of Computer Applications (0975 — 8887)

*There must be at least one term of odd degree otherwise ,f(x) of
all even powers is a square of a polynomial of degree(m/2).If in
any polynomial arithmetic operation the resultant polynomial is
having degree greater than or equal to m,

it is reduced to a polynomial of degree less than m by the
irreducible  polynomial .NIST  recommended  curve
me{113,131,163,193,233,239,283,409,571}with the following
irreducible functions.

3,394+1

1 + x8 +x3+x2+1

3ty 184341

F193 1) =x1%+x15 41

3 +X74 +1

9,36 1

F113 10 =xt
F131  f()=x"
F,163  f(x)=x°

F)233 f(x) =x%3

Fy239 f(x) =x°3

F,283 f(x) = x283 + x12 +x7+x5+1

9, .87,

Fy571 f(x) = x571 + x10 +x5+x2+1

Any irreducible polynomial can be taken for Cryptography By
Karatsuba Multiplier and ASCII Codes according to its key
length.

F409 f(x) =x*0

5.Karatsuba-Ofman Method:

Karatsuba-Ofman’s algorithm[2][3]is considered one of the
fastest ways to multiply long integers. Karatsuba-Ofman’s
algorithm is based on a divide-and-conquer strategy. A
multiplication of a 2n-digit integer is reduced to two n-digits
multiplications, one(n+1)-digits multiplication, two n-digits
subtractions, two left-shift operations, two n-digits additions and
two 2n-digits additions.

Let X and Y be the binary representation of two long integers:

k-1 k-1
X = Z x2' and Y= z yi2
i-0 i=0

Now compute the product of X and Y. For this the operands X
can be divided into two parts X", and X" .Similarly Y can be
divided into two parts Y™ ,and Y". Let k = 2n then

(n-1 n-1

X= 2 Z Xim2' | + Z xi2t = X"+ xt
_i=0 i=0
-1 n-1

Y= 2 yan} + Z yi2l = YM2h+ vt
i—0 i=0

The product is computed as
P:(XH2n+XL) (YH2n+YL):22n(XHYH)+2n(XHYL+
XLYH) +XLYL:22n XHYH +XLYL+((XH+XL)(YH+YL)
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If P1=Xx"Y"
P2=X" Y-
and P3 = ( X" + X (Y" +Y") then the product is
P= 2"P1 + P2+ 2" (P3-P1-P2)

The Karatsuba Ofman’s algorithm is based on 2n bits
multiplication can be reduced to three n bits multiplications as
P1,P2,P3.Where the function size Size(X) returns the number of
bits of X. The function H(X) returns the higher part of the X.
Function L(X) returns the lower half of the X. Rightshift(X,n)
returns X2" and one bit multiplication(X,Y) returns XY when
both X and Y are formed by a single bit.

Algorithm:
Stepl:P = M(X,Y)
If (Size(X) = 1) Then M= One Bit Multiplier(X, Y)

Else
Step-2:P1 := MUL(H(X), H(Y));
Step3: P2 := MUL(L (X), L (Y));
Step4: P3 := MUL(H (X)+L(X), H(Y)+L(Y));
Step5: P := Right Shift (P1, Size(X)) + Right Shift
P2,Size(X)/2) + P2

Endif

Step6: Reduce P with irreducible polynomial

(P3-P1-

6.Algorithm for encryption and decryption:

Algoritm 1:
Step 1. Use an appropriate data structure to store the text to be
encrypted.

Step 2. Read the table in row-major form and find the character
stored in that position.

Step 3. Note the row and column values.
Step 4. Assign these values to the same character in all
positions it appears.

Now, we define an analogous algorithm due to EIGamal[10] for
encprypting the required text as follows:

Algorithm 2:
Stepl.Select E(a,b)with an elliptic curve over GF(p) or GF(2m).
Step2. Select a point on the curve e;= (X;.y;)-
Step3. Selectg
Step4. Calculate ej: (xj,yj) =g*e
Step5.  Announce e; ,ej as public key and keep “g” as a private
key.
Step6. {Encryption}
Now select h a number in plaintext P with the coordinate from the
Table and calculate pair of points on the text as ciphertext.

Step7. Cj=h™*g;

Cj = (xpiyp) +h* §
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Step8. {Decryption}

After receiving ciphertext C; and C; calculate ASClltable = [{NUL'}{[0 O]};

J {'SOH}{[1 0]};

P(plain text) with the private key g . {STX}A[2 013,
(Xpuypy) = Cj - (g *C;) [Here the (-)sign means adding with {ETX}{[3 01}
. {EOT}{[4 0]};
inverse.] {EQN}{[5 0]}
Step9. Read the characters from the co-ordinates(xp;,yp;) {/ACK}{[6 0};
{BEL}{[7 OI};

XH YH XL YL ;siH xL 11{ YlI-
UL UL XOE XOR
| . 2n-bits
2n-bits n
L —
P1 n-bits P2 n-bits
¥ ¥
UL
P3 2n-bits
L 2 w
HOR
Shift Bubnbits AddZnbits
L 2
Eeduce P with the
irreducible polynomial

Fig-2 Hardware diagram for Karatsuba multiplication

7.Matlab coding for Cryptography by ASCII
code with Karatsuba multiplier

7.1The Matlab code for ASCII Table
Below is the Matlab code for ASCII table.ASCIl.m
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{BS%} .{[8 0I};
{HT} {[9 0]}
{FF}.{[12 0]};

{CR}{[13 O]},
{SO%.{[14 0]};

{SI3A[15 013

{DLE}{[0 1]}
{DCL}{[1 1]};
{DC2}{[2 1]};
{DC3}A{[3 1]};
{DC4%{[4 1]};
{NAK'}{[5 11};
{SYNT{[6 1]};
{ETB}A{[7 11};
{CANT{[8 1]};

{EM3{[9 1]};

{SUB}{[10 1]},
{ESC}{[11 1]}

{FSTA[12 1]};

{GS}H{[13 1]},

{RS}{[14 1]};

{UST{[15 1]}

{SP3}{[0 2]},
{HAIL 2]}
{"3AI2 21}
{#3{8 21}
{33414 21};
{%34[5 2]}
{&3.{16 2]};
{37 218
{(3AI8 21}
DA 213
1{[10 2},
+3A{[11 2]}
T2 2]}
A3 2]}
TA[14 2]}
%, {[15 213

{
{
{.
{-
{.
{
{0
v
{2
{3
{4
{5
{6
{r
{8
{9
1.
O
{<
{=
>
{7
{@
{A
{B'
{c
{D
{E
{F
{G

{H1}{[8 41}
{13419 413
{93.{[10 41};
{K}{[11 4]};
{L}{[12 4]}

{M3A{[13 4]};

{N}A[14 4]);
{0}{[15 41
{PY05I):
{Q}11 51
{RM[251):
{1351}
{744 51
{UL{[55]):
(V1406 51):
{W3{[7 51
(X348 5]):
{40051
{Z3.4[10 5]},
{03 51
{4012 51
{13403 51%:
{"}.{[14 51
{34015 51
{400 61}
{a}.{[L 6]};
{o}{[2 613
{c}.{3 61}
{a}{14 6]
{405 613
{346 61}
Cod{[7 61
{h).{[8 6]
{1409 61);
{4110 61},
{K){[L1 6]
174112 6]},

{m}{[13 6]};

{n}{[14 6]};
{o}{[15 6]}
{p}A[0 7]}
{a}A1 71}
{r3Al2 71}
{33 71k
{414 71k
{u{l 71k
{v3AI6 71}
{wW{[7 71}
{x}AB 71}
{y30 71}
{Z}{[10 7]}
{{HL 7TE
{1342 713
{338 71}
{~3{04 71}

{DEL}A{[15 71}
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7.2 The Matlab code for Karatsubamultiplication.

Karatsuba.m
function r = karatsuba(p,q)
n = length(p)-1;
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if(n==0)
r=p*q;
return;
end;
k = floor((n+1)/2);
p0 = p(1k);
pl = p((k+1):(n+1));
q0 = q(1:k);
ql = q((k+1):(n+1));
r0 = karatsuba(p0,q0);
r2 = karatsuba(p1,91);
rl = karatsuba(add(p0,p1),add(q0,q1));
rl =add(rl,-r0); rl = add(rl,-r2);
r =add( r0, [zeros(k,1);r1]);
r =add(r, [zeros(2*k,1);r2] );

7.3 The Matlab code for defining elliptic curve

ecc.m
Below is the matlab code for the ecc.m which performed elliptic
curve addition over the real numbers.
Let E be the elliptic curve y? = x* + Ax + B and let
P1 =(x1, y1),P2 = (x2, y2). The m-file will then produce
P1+P2=P3=(x3,y3)
where + is the elliptic curve addition operation over E. The user
must input the coordinates x1, y1, x2, y2 and, if P1 = P2, also the
parameter A.
%--------- defining elliptic curve
p=23;
aconst =1;
bconst = 1;
a=1;
b=1,
z = mod(4*(a"3) + 27*(b"2),p);
%-------- determining quadratic residues
223 = [1:1:p-1]; %reduced set of residues
X = [1:1:((p-1)/2)];
forx=1:1:(p-1)/2
023_1(x) = mod(x"2,p);
end
forx=1:1:(p-1)/2
023_2(x) = mod((p-X)"2,p);
end
023 = intersect(q23_1,q23_2);%quadratic residues
%Defining elliptic curve points

fori=0:1:p-1
y2(i+1) = mod((i"3+i+1),p);
end
%Elliptic group
y1=1[I
y2=[

for i =1 : length(y2);
[v,idx] = find(y2(i)==023_1);
if(isempty(idx)==0)
y_1=[y_1idx];
y_2 = [y_2 p-idx];
else
y_1=[y_1 NaN]J;
y_2=[y_2 NaN]J;
end
end

e=];
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i=0;
fori=1:p
if(y_1(i)>0)
i=i
a=[i-1y 1(D];
b=[i-1y_2()];
e(j.;) =[ab];
end
end
x =round(1 + (size(e,1) - 1) * rand);
y = gencolnum;
xi = e(x,y);
yi = e(x,y+1);
ei = [xiyi]; %required elliptical curve point
96%%%0%% %% %% %%%6%% %% %% % %% % %% %% %% %%
%%%

7.5This matlab code is for point multiplication

eccmulti.m
function EJ = pointmulti(P,G,a)
n = floor(G/2);
r=2"n;
while(r>G)
n=n-1;
r=2"n;
end
ad=G-r;

if(ad > 2)

nl = floor(ad/2);

rl =2"nl;

while(r1>ad)
nl=nl-1;
rl =2"nil,

end

adl=ad-rl;

PP =P;

fori=1:nl
S =PP(1) + (PP(2)/PP(1) );
XL=(S"2) +S +3q;
K = karatsuba((S+1),XL);
YL =PP(1)"2 + K;
PP(1) = XL;
PP(2) = YL;

end

if(ad1==1)
S=(PP(2) + P(2))/(PP(1) +P(1));
tmpEJ(1) =S"2 + S + PP(1) + P(1) + g;
tmpEJ(2) = (PP(1) + P(1) ) + (tmpEJ(2) + PP(2) );

end

end

PP =P;
fori=1:n
S =PP(1) + (PP(2)/PP(1) );
XL=(S"2) +S +q;
K = karatsuba((S+1),XL);
YL =PP(1)*2 +K;
PP(1) = XL;
PP(2) = YL;
end
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if(ad==1)

S=(PP(2)+ P(2))/(PP(1) +P(1));

EJ(1) =S"2+S+PP(1) +P(1) +a;

EJ(2) = (PP(1) +P(1) ) + (EJ(1) + PP(2));
elseif(ad==2)

S=P(1) +(PQ)/PQ));

XL=(5"2) +S +3;

K = karatsuba((S+1),XL);

YL=P(1)"2 +K;

PPP(1) = XL;

PPP(2) = YL;

S=(PP(2) + PPP(2) )/ (PP(1) + PPP(1) );

EJ(1) =S"2 + S+ PP(1) + PPP(1) + a;

EJ(2) = (PP(1) + PPP(1) ) + (EJ(1) + PP(2) );
elseif(ad==0)

EJ(1) =PP(1);

EJ(2) =PP(2);
else

S=(PP(2) + tmpEJ(2) )/ ( PP(1) + tmpEJ(1));

EJ(1) =S"2 +S + PP(1) + tmpEJ(1) + a;

EJ(2) = (PP(1) + tmpEJ(1) ) + (EJ(1) + PP(2) );
end

7.4 This matlab code is for encryption and
decryption

encrydecryp.m
g =round(1 + (10 -1) * rand);%private key
ej = pointmulti(ei,g,aconst);

load ASClItable
ptest = ‘welcome'; %input('Enter any string :")

temph =];
for i =1 : length(ptest)
for j = 1: size(ASClItable,1)
if(ptest(1,i) == ASClItable{j,1})
temph = [temph ASClItable{j,2}];
end
end
end
tempi = round(1 + (length(temph) - 1) * rand);
h = temph(tempi);
while(h==0)
tempi = round(1 + (length(temph) - 1) * rand);
h = temph(tempi);
end
ci = pointmulti(ei,h,aconst);
cjpart = pointmulti(ej,h,aconst);
temp =l;
for i =1 : length(ptest)
for j = 1: size(ASClItable,1)
if(ptest(1,i) == ASCllItable{j,1})
temp = [temp ; ASClItable{j,2}];
end
end
end
temp
for i =1 : length(ptest)
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cji(i,:) = pointadd(temp(i,:),cjpart,aconst);
end
%Decryption
fori=1:size(cji,1)
desc(i,:) = pointsub(cji,pointmulti(ci,g,aconst),aconst);
end
desc

8. Conclusion

We provide a brief overview of elliptic curve cryptography and
obtain the ASCII table with Karatsuba Multiplier for fast
encryption and decryption. The strength of encryption depends on
its key, if we use the alphabetical table then there will be no
impact on strength and runtime performance. Runtime will be
faster by this process, i.e use of ASCII table will provide better
performance .This process and its implementation have been
developed by ourselves .Further we are developing Elliptic curve
cryptography by ASCII codes with some fast algorithms and their
implementation.
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