
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

61

An Ameliorated Methodology for the design of Object
Structures from legacy ‘C’ Program

ABSTRACT
Information systems of many organizations are processed through

system of interrelated „C‟ programs. Since, the „C‟ programming

language was developed in the early second half of the last

century. It couldn‟t incorporate to facilitate the current day‟s

technology. Therefore, the programs developed based on this are

not coping with the advancement of technology. There is a need to

harness the useful business information buried across the legacy

„C' systems and the advancement in the information technology.

This act of harnessing the old virtues in new environment is like

resolving the labyrinth. The paper proposes a way of resolving this

deadlock situation by reverse engineering the legacy „C‟ systems

into the design specifications of the target environment, and then

forward engineering the target design specification into the

desired language code.

 This paper attempts to develop a reengineering

methodology that automatically abstracts the view elements like

attributes, functional dependencies, interrelationships between

group of attributes and actor‟s interface, etc. The correctness and

completeness of these abstractions are ensured using Unified

Modeling language (UML) diagrams. The methodology blends the

reverse engineering and re-design stages into a unified process.

Keywords:
Functional dependencies, abstraction, reengineering, business

rules, legacy systems, reverse engineering, system requirement

specification.

1. INTRODUCTION
Information systems of many organizations are processed through

system of interrelated „C‟ programs. Since, the „C‟ programming

language was developed in the early second half of the last

century. It couldn‟t incorporate to facilitate the current day‟s

technology. Therefore, the programs developed based on this are

not coping with the advancement of technologies in the areas of

Storage, Processing, Graphical user Interfaces. There is a need to

harness the useful business information buried across the legacy

„C' systems and the advancement in the information technology.

This act of harnessing the old virtues in new environment is like

resolving the labyrinth. The following are the different ways to

resolve labyrinth.

 One way is to discard completely the old system and develop

a totally new system. This approach suffers from a pitfall of

loosing useful business rules accumulated throughout the

development and maintenance process. Thus, it will not serve

the purpose of developing the new system by incorporating

the buried business rules.

 The second approach is the translation of the existing „C‟

code into the target language. This translation process can be

carried out in two different ways viz. manual and automatic

approaches. The manual approach is time consuming and

error prone approach. Moreover, the enormity of the stored

legacy system compels the transformation process next to

impossible. The automatic translation can be performed by

developing a translator tool, because of the flexibility

involved in the program coding the translator can‟t be

developed with correctness and completeness. Thus

translator may not translate the entire code. It may translate

the simple code leaving it to human to translate complex

code. Thus the translation of the legacy system directly to the

target language may not be a good solution for the reuse of

legacy „C‟ systems. Moreover the translation always takes

the taste of the original language.

 The third approach is the wrapping. In this approach, the old

system is wrapped through the use of emulators so that at the

front end the new system is running but at the back end the

same old system is running with the slow phase. Thus, the

wrapping approach is also not so useful for the reutilization

of the existing code.

The best alternate approach is the reengineering of the old system

to the new target system. We propose a new methodology in

which we abstract the view elements of the new system from

legacy „C‟ system by blending the reverse engineering process

with re-design process to form a unified process which is shown in

figure 1.

The authors D.B. Pathak and Shivanand Handigund [1] developed

a similar methodology for legacy COBOL systems. In their

methodology they have abstracted the view elements of the design

specification from the old system and then migrated to the new

system. This proposed methodology is an ameliorated one over

their methodology and also which changed legacy system.

Dr. Shivanand M. Handigund
Dept. of Computer Science & Engineering.

Bangalore Institute of Technology
Bangalore –560 004

Rajkumar N. Kulkarni
Dept. of Information Science & Engineering

Ballari Institute of Technology & Management
Bellary – 583 104

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

62

2. TERMINOLOGY
Referenced Attribute – A variable is said to be referenced in a

statement if the value of that variable is used during the

execution of the statement. For ex., A = B + C. The values of B

& C are used or referenced in the statement [1, 16]. The

attribute value is unaltered with the execution of the statement.

Defined Attribute – A variable is said to be defined, in a

statement if the execution of that statement can alter the value

of the variable. For ex., A = B + C. The values of B & C are

referenced or used in the statement, and A is said to be defined

[1, 16].

Preserved Attribute – A variable whose value is unaltered

with the execution of statement, then the attribute value is

preserved. [1]. A variable may be both referenced and defined

in a statement, or may be both preserved referenced, but cannot

be preserved and defined in a statement.

Functional Dependency - If R is a relation schema, and A and

B are non-empty sets of attributes in R, then B is functionally

dependent on A, iff each value of A in R has associated with it

exactly one value of B in R, and the formal notation would be A

 B, where A is referred to as the determinant, and the

attributes on RHS are referred to as the dependent. A B is

formally read as “A functionally determines B” [10].

Closure of Functional dependency set: The closure of

functional dependency set is formed with set of all functional

dependencies present and the set of all derived implicit

functional dependency set.

Legacy Software: The Legacy software is defined as a 10 to 15

year old software system, which is still executable but resists for

modifications leading to software crash.

The characteristics of the legacy software are [1]:

 - The legacy software is large, typically with millions of lines

of code

 - It is more than decade old

 - It is written in legacy languages like C, COBOL, FORTRAN

etc.

 - It is unstructured and badly documented

 - It is often mission-critical at work in the business

organization

Mission Critical: The Information System cannot run without the

presence of software even for a short period.

Abstraction Levels: The abstraction level is defined with respect

to the proximity to the machine understanding. The abstraction

levels (Requirement, Design, Implementation) corresponds to a

phase in the software development life cycle and defines the

software system at a particular level of detail [1].

Software maintenance: The modification of a software product

after delivery to correct faults, to improve performance or other

attributes, or to adapt the product to a changed environment [1].

Restructuring: Restructuring is the transformation from one

representation form to another at the same abstraction level. The

transformation preserves the external behavior of the system.

Restructuring is typically used in implementation stage to

transform code from an unstructured form to a structured form [1].

Reverse Engineering: The reverse engineering is the process of

analyzing the subject system with two goals [1]:

 - To identify the system‟s components and their interrelationships

 - To create representations of the system in another form at a

higher abstraction level.

Forward engineering: Forwarding engineering is the traditional

process of moving from the requirements of the system to its

design stage, and from design stage to the concrete

implementation of the system. It should be preceded by the

reverse engineering in which case it is simply called as software

development [1].

Reengineering: The process of re-engineering can be defined by

the simple formula [1]:

FE
RE

Reverse Specification

 Reengineering

SRS SRS

Design

Specification

Design

Specification

Legacy „C‟

system

New system

in the target

environment

R

D

RTD

Existing System Target System

RE Reverse Engineering

FE Forward Engineering

RD Re-Design

RTD Reverse Target Design

 In the Existing Work

 In the Proposed System

Figure – 1. Specific Model for reengineering

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

63

Re-engineering = Reverse engineering + Change in techniques +

Forward engineering

3. PROPOSED METHODOLOGY
„C‟ programs do not have strict indentation rules. Because of

the flexibility available in the „C‟ programming language

multiple statements can be placed on a single line or a single

statement can span several lines [18]. All „C‟ statements must

be terminated with a semicolon and the last statement in the

body of the loop may terminate with right brace. Similarly the

beginning of the statement follows either semicolon and a blank

or left brace. So, in the beginning of the process, we are

assigning the line numbers to each statement of the „C‟ program

except for the blank lines and the comment lines [12, 13, 14,

15]. This serve as a moulded input for the next steps in the

abstraction of functional dependencies.

The methodology for the abstraction of functional

dependencies and the design of object structures from the „C‟

program is explained in the following steps:

3.1 ABSTRACTION OF CONTROL FLOW

GRAPH FROM ‘C’ PROGRAM
The Control Flow Graph (CFG) indicates the execution control

flow of the entire program or system of programs. In „C‟

program, each line consists of one statement or control

predicate. To represent it as a graph we have to assign one

vertex (node) for each statement. The control flow between the

statements is indicated by an edge between those vertices.

Since, the Legacy „C‟ system contains thousands of lines of

code, and it is a lengthy process to represent the CFG. The

memory requirement to represent CFG is also more when the

size of the program increases. This can be reduced by

collapsing the consecutive straight line sequential statements

into a single block and representing it as a vertex. The CFG is

stored in buffer in the form of Control Flow table, in which the

first and second column contains statement numbers of start and

end statements of collapsible straight-line sequence of basic

block. If the block contains the single statement, the first &

second columns contain the same statement number. The third

and fourth columns contain statement numbers of alternate

control transits. Here, IF - ELSE, FOR, SWITCH, WHILE,

DO-WHILE, EXIT, RETURN, CONTINUE, and FUNCTION

CALLS are treated as verbs to enable the parser to identify the

beginning of each statement separately. The end of the program

is represented with the statement number followed by the

character E.

 The following paragraph depicts how the CFG works

for “if” and “for” statement.

if Statement: The “if” statement may consist of a single

statement, a block of statements, or nothing (in the case of

empty statements). The else clause is optional. if expression

evaluates to true, the statement or block that forms the target of

if is executed; otherwise, the statement or block that is the

target of else will be executed, if it exists. The scope of if

terminates either with a single statement following if

conditional, which is ending with semicolon or a set of

statements enclosed in a pair of braces. Similarly the scope of

else terminates with a single statement following else which is

ending with a semicolon or a set of statements enclosed in a

pair of braces. The statement numbers of these alternate transits

are entered in the column 3 and column 4. We are using

column 3 for the TRUE value of the alternate transit and

column 4 for the FALSE value of the alternate transits.

for statement: The for loop is another entry-controlled loop

that provides a more concise loop control structure. The

execution of the for statement is as follows:

 Initialization of the control variables is done first, using

assignment statements.

 The value of the control variable is tested using the test-

condition. The test-condition is a relational expression that

determines when the loop will exit. If the condition is true,

the body of the loop is executed; otherwise the loop is

terminated and the execution continues with the statement

that immediately follows the loop. The statement numbers

of these alternate transits are entered in the column 3 and

column 4. We are using column 3 for the TRUE value of

the alternate transit (when the test-condition is true) and

column 4 for the FALSE (when the test-condition is false)

value of the alternate transit.

We have already developed the automated methodology

in the form of a tool [14, 15]. The CFG of the sample C program

depicted in Figure 2 is shown in Table 1 as follows

Table 1. The Control Flow Table for the Program in Figure 2

START END Transition 1 /

Next Jump

Transition 2 /

Alternate Jump

1 14 15 19

15 18 14

19 23 24 33

24 32 23

33 34E

3.2 ABSTRACTION OF DATA FLOW

GRAPH FROM ‘C’ PROGRAM
The above designed CFG is used to design Data Flow Graph

(DFG) in the form of Data Flow Table (DFT). Each entry in the

DFT indicates the referenced and defined items of that

statement. These entries are organized in the CFG order. The

sample entries are shown in the Table 2. The data items in a „C‟

program are defined by scanf, fscanf, gets, fread statements, the

left side attribute of the arithmetic expressions except stdin, and

stdout. The data items in a „C‟ program are referenced by printf,

fprintf, puts, fwrite, statements, the right side attributes of the

arithmetic expressions and the attributes of control predicates.

The DFG for our sample „C‟ program depicted in figure 2 is

represented in Table 2.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

64

Table 2. The Data Flow Graph for the Program in Figure 2.

Stateme

nt

Number

Referenced

variable

Defined variable

1 --- ---

-- --- ---

10 --- ---

11 filename

12 filename fp

13 --- ---

14 i i

15 --- ---

16

ENAME,BS,LIC,

PT,IT,OA

17 ENAME, BS, LIC,

PT, IT, OA

18 --- ---

19 fp

20 --- ---

21 filename fp

22 -- ---

23 i i

24 --- ---

25

ENAME,

BS,LIC,PT,IT,OA

26 BS HRA

27 BS DA

28 BS,DA,HRA,OA GS

29 LIC,PT,IT DED

30 GS,DED NS

31 BS, DA, HRA, LIC,

PT, IT, OA, GS,

DED, NS

32 --- ---

33 fp

34 --- ---

3.3 ABSTRACTION OF FUNCTIONAL

DEPENDENCY SET AND THE FD

CLOSURE FROM ‘C’ PROGRAM
If the statement contains both referenced and defined items,

then the referenced items determine the defined items. Thus

there is a functional dependency between the referenced and

defined items.

 The Closure is formed by combining attributes of the

statements connected by referenced defined cycle as shown in

Table 3 below:

Table 3. Functional Dependency set of a sample DFT

Referenced item Defined item

 a b c d

 e f g

 c h i

 d f k

 k m n

 g l u

Here the functional dependency set includes:

a b c d

e g

c h i

d f k

g l u

Such Functional Dependency sets are to be identified from the

closure of the functional dependencies as shown in figure 3.

Thus from the functional dependency set, we obtain the

attributes participating in the functional dependency set. This

cycle repeats for all the variables in the data flow graph table.

The proposed tool developed here abstracts the

functional dependencies from the input „C‟ program shown in

figure 2.

The functional dependencies abstracted from the program are:

 BS HRA

 BS DA

 BS, DA, HRA, OA GS

 LIC, PT, IT DED

 GS, DED NS

The Functional Dependency Set closure for the above

functional dependencies is:

{BS}+ {HRA}, {BS}+ {DA}

{BS, DA, HRA, OA}+ {GS}

{LIC, PT, IT}+ {DED}

{GS, DED}+ {NS}

3.4 ALGORITHM FOR THE

ABSTRACTION OF FUNCTIONAL

DEPENDENCIES FROM ‘C’

PROGRAM
/* Algorithm for the Abstraction of Functional Dependency

from the „C‟ program */

Input: Executable „C‟ program

Output: Functional Dependencies

1. [Moulding of input ‘C’ program]

1.1 Assign Line number to each physical

statement of the program except comment

lines and blank lines.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

65

2. [Abstract the Control Flow Graph of the

Program]

2.1 Abstract the Control flow of the „C‟ program

and store it in the form of a Control Flow

Table as shown in table 1.

3. [Abstract the Data Flow Graph of the

Program]
3.1 For each statement of the input program,

identify the referenced variable and the

defined variable.

3.2 Write separately the statement number,

referenced variables, and defined variables.

4. [Abstraction of Functional Dependencies]

For all variables defined in the Data Flow Graph of

step 3

Repeat

 Find the Closure of functional dependencies as

 explained in section 3.3 until, for all the

 variables in the defined and referenced column

 of the Data Flow Graph.

4. CASE STUDY
The proposed procedure is implemented for number of „C‟

programs and the results we got are correct and complete. The

sample „C‟ program depicted in figure 2 is the output of

moulding process.

 1 #include <stdio.h>

 2 #include <conio.h>

 3 main()

 4 {

 5 FILE *fp;

 6 int number,

quantity,BS,DA,HRA,OA,LIC,PT,IT,GS,DED,NS,i;

 7 float price,value;

 8 char ENAME[10], filename[10];

 9 clrscr();

 10 printf("Input file name\n");

 11 scanf("%s", filename);

 12 fp = fopen(filename, "w");

 13 printf(" ENAME BS LIC PT IT OA\n");

 14 for(i=1; i<=3; i++)

15 {

16 fscanf(stdin, "%s %d %d %d %d %d", ENAME, &BS,

&LIC, &PT, &IT, &OA);

17 fprintf(fp, "%s %d %d %d %d %d", ENAME, BS, LIC, PT,

IT, OA);

18 }

19 fclose(fp);

20 fprintf(stdout, "\n\n");

21 fp = fopen(filename, "r");

22 printf("ENAME BS DA HRA LIC PT IT OA

GROSS DED NET_SAL \n");

23 for(i=1; i<=3; i++)

24 {

25 fscanf(fp, "%s %d %d %d %d %d", ENAME, &BS, &LIC,

&PT, &IT, &OA);

26 HRA = BS * 0.09;

27 DA = BS * 1.14;

28 GS = BS + DA + HRA + OA;

29 DED = LIC + PT + IT;

30 NS = GS - DED;

31 fprintf(stdout, "%-8s %5d %4d %4d %4d %4d %4d %4d

%5d %5d %5d\n",

 ENAME, BS, DA, HRA, LIC, PT, IT, OA,

GS, DED, NS);

32 }

33 fclose(fp);

34 }

Figure 2. A sample ‘C’ Program

5. CONCLUSION
This paper presents an automatic tool that abstracts attributes

and forms the first cut object classes through the abstraction of

functional dependencies. This procedure is implemented by a

scenario of methods to abstract control flow graph and then to

represent the data flow graph in the form of data flow table.

Using the data flow table of the program and data & control

dependencies concept, the functional dependencies are linked to

form the closure. Repeating this procedure, different functional

dependency sets are obtained, and then the implied functional

dependencies are eliminated using the axioms of functional

dependencies. The attributes within each closure group form the

first cut object structures. The correctness and completeness is

authenticated by the use of axioms.

6. REFERENCES
[1] Shivanand M. Handigund, “Reverse Engineering of Legacy

 COBOL systems”, Ph.D. Thesis, 2001, IIT Bombay,

 Mumbai.

[2] Ronald S. King, James J. Legendre, “Discovery of

 Functional and Approximate Functional Dependencies in

 Relational Databases”, Journal of Applied Mathematics And

 Decision Sciences, 7(1), 49-59, 2003.

[3] Wie Ming LIM, John Harrison, “Discovery of constraints

 from data for Information system Reverse Engineering”,

 IEEE 1997, 39-48.

[4] Wie Ming LIM, John Harrison, “Parallel approaches for

 Discovering Functional Dependencies from Data for

 Information System Design Recovery”, IEEE 1997, 254-

 260.

[5] Victor Matos, Becky Grasser, “SQL-based Discovery of

 Exact and Approximate Functional Dependencies”,

 SIGCSE Bulletin, Volume 36, Number 4, Dec-2004, 58-63.

[6] Hong Yao, Howard J. Hamilton, and Cory J. Butz,

 “FD_Mine: Discovering Functional Dependencies in a

 Database Using Equivalences”.

[7] Jalal Atoum, Dojanah Bader, and Arafat Awajan, “Mining

 Functional Dependency from Relational Databases Using

 Equivalent Classes and Minimal cover”, Journal of

 Computer Science 4(6): 421-426, 2008, Science

 Publications.

[8] Iztok Savnik, Peter A. Flach, “Bottom-up Induction of

 Functional Dependencies from relations”, Knowledge

 Discovery in Databases Workshop WS-93-02, 174-185.

[9] Herbert Schildt, “C The Complete Reference”, Fourth

 Edition, Tata McGraw-Hill Publishing Company Limited,

 New Delhi, 2000.

 [10] Julian M. Scher, Canghui Qiu, “FD-EXPLORER: A

 pedagogical and Design Tool for Functional Dependency

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

66

 Exploration”, in the proceedings of ISECON 2004, v21,

 1-7.

[11] Mannila, H., and Raiha K.J., “Algorithms for Inferring

 Functional Dependencies from relations”, Data and

 Knowledge Engineering, 12(1): 83-99, 1994.

[12] Rajkumar N. Kulkarni and Shivanand M. Handigund

 “Abstraction Of Structural Components From Legacy „C‟

 Program”, International Conference on “Advances in

 Computer Vision and Information Technology (ACVIT –

 07)”, Aurangabad, India, November 2007, pp. 1523-1530.

[13] Rajkumar N. Kulkarni and Shivanand M. Handigund,

 “Moulding The Legacy „C‟ Programs For

 Reengineering”, International Conference on “Advances

 in Computer Vision and Information Technology (ACVIT

 -07)”, Aurangabad, India, November, 2007, pp-1531-

 1537.

[14] Rajkumar N. Kulkarni and Shivanand M. Handigund,

 “Abstraction of Structural and Behavioral

 Components from Legacy „C‟ Program”, 2nd International

 Conference on Advanced Computing and Communication

 Technologies (ICACCT 2007), Panipat, Haryana, India,

 November, 2007, pp 550-554.

[15] Rajkumar N. Kulkarni and Shivanand M. Handigund,

 “Abstraction Of Structural And Behavioral Components

 From Legacy „C‟ Program”, International Journal of

 Computing Science and Communication Technologies,

 Vol. 1, No. 1, July 2008, pp 70 – 75.

[16] K K Aggarwal and Yogesh Singh, “Software

 Engineering”, Revised second edition, New Age

 International(P) Limited, 2005, New Delhi.

[17] E. Balaguruswamy, “Programming in ANSI C”, third

 edition, Tata McGraw-Hill Publishing

 Company Limited, New Delhi, 2006.

[18] T. D. Brown Jr., “C for Basic Programmers”, Tata

 McGraw Hill Publishing Company Limited,

 New Delhi, 1992.

