
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

9

A SOFTWARE RELIABILITY GROWTH MODEL FOR
THREE-TIER CLIENT SERVER SYSTEM

Pradeep Kumar

Information Technology Department
ABES Engineering College, Ghaziabad

Affiliated to UPTU Lucknow, India

Yogesh Singh
Professor, University School of IT

Guru Gobind Singh Indraprastha University

 Delhi – 110006, India,

ABSTRACT
With the ever-increasing role that software is playing in our real-

life systems, concern has steadily grown over the quality of the

software products. In today’s life the computers are being used

to monitor and control safety critical and civilian systems with a

great demand for high-quality software products. So reliability is

a primary concern for both software developers and software

users. In literature many software reliability growth models have

been proposed over the years to estimate and predict reliability

of software products. But it is often very difficult for project

managers and practitioners to determine which model is more

useful in a particular domain and up to what extent. In this paper

we propose a NHPP based software reliability growth model for

three-tier client server systems. The present model composed of

three layers of client-server architecture related to presentation

logic, business logic and database stored at backend.

Presentation layer contains forms or server pages which presents

the user interface for the application, displays the data, collects

the user inputs and sends the requests to next layer. Business

layer, which provides the support services to receive the requests

for data from user tier, evaluates against business rules, passes

them to the data tier and incorporates the business rules for the

application. Data layer includes data access logic, database

driver(s), query engines used for communicating directly with

the data store of a database. The model has been validated

through standard dataset consists of software failure data on

various projects released from the software reliability dataset

and applying to a live commercial application.

Categories and Subject Descriptors
Software reliability engineering, client-server models,

distributed applications, software metrics, nonhomogeneous

Poisson process, failure rate.

General Terms
Reliability, Measurement, Performance, Experimentation

Keywords
Application server, database server, presentation layer,

reliability growth factor

1. INTRODUCTION
The present scenario of software development life cycle has

emerged into a distributed environment because of the

development of network technology & ever increased demand of

sharing the resources to optimize the cost. Therefore to improve

the process of reliability estimation and prediction of software

products we identify and remove the remaining faults during the

testing phase in a three-tier client server based systems.

Reliability can be grown through various means such as

improving the process of designing, effectiveness of testing,

manual & automated inspections, familiarization with

developers, users & product, and improving the management

processes & decisions [1, 2]. The rate at which reliability grows

depends on the factors related to how rapidly defects are

discovered, how fast corrective action can be identified and

implemented & how soon the impact of the changes take place

and make operational in the field. In three-tier client server

architecture the presentation logic and business logic are split

off into separate components resulting into three-tier system

shown as in figure 1.

Figure 1. A three-tier client-server architecture view

2. SRGM SPECIFICATION
In a multi node client-server system consisting of various

components of software that execute on different nodes it

becomes almost mandatory to model the system in such a client-

server computing environment if realistic reliability prediction

and assessment are to be made. Also in three-tier architecture

when there are number of clients and number of servers in a

client-server system, it is not always necessarily the case that a

software failure in any of the clients or servers will cause the

system to fail. There are various factors related to the failure of a

system such as transmission failure, networking failure,

database-linking failure, query engine failure including software

development life cycle (SDLC) failure [4,5]. To address some of

these vital issues related to software failure we decompose the

present model into three different layers and discuss each layer

to identify the causes of errors, level of severity and its impact to

 Level 1 Level 2 Level 3

 Sending request sending request SQL Query

 Sending reply sending reply

 Client Application Server Database Server

Presentation

Layer

Contains

Presentation

Logic

Business

Layer

Contains

Business

Logic

Data

Layer

Contains

 Data Access

Logic

Database

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

10

improve the reliability of the software during the testing phase.

Finally we compute the failure intensity function, probability

distribution function, cumulative distribution function, mean

time to failure, and reliability of the system as a whole using a

real life software reliability dataset [6,7]. The present model

facilitates project managers and the practitioners to assess the

reliability of a software system based on the amount of efforts

put in testing, how accurately parameters are estimated, how

efficiently the relevant & updated failure data of modern

computer system is collected and to the possible extent the

model has been validated using current real life software. This

model further can be used to determine the quality of

development processes in terms of the number of remaining

faults, mean time to failure, time between failure, next expected

failure and failure intensity of the software at the beginning of a

system test.

Table 1. Causes of Errors at Different Layer of the Model

Model Layers Possible Causes of Error(s)

Presentation

layer

Invalid input(s), non-formatted data such as

entering characters in place of a non negative

integer value, User authentication and

authorization error such as invalid login or

password and Lack of security measures such

as damaging & mishandling of the system

Business

Layer

Logical error such as business logic is not

being coded as per the software requirement

specifications, Exceptions are not being

handled properly, Less tolerance power (degree

to which handle the unexpected behavior of the

system) and Security measures such as poor

encryption / decryption algorithm(s)

Database

Layer

Non homogeneous data formats, database

connectivity error or intermittent connectivity,

ODBC driver failure, query engine failure to

execute the query or large amount of data to

process and retrieve, availability of low

bandwidth to fetch the data, network

congestion and security measures such as fire,

floods, earthquake or any other mishap.

The main advantage of three-tier client server SRGM is that all

business logic has been centralized in one layer. A component in

the business layer can be accessed by any number of

components in the presentation layer, therefore any changes to

business logic can be made in one place and be automatically

inherited by all other components without having to duplicate

the change in those other components. Also the presentation

layer components do not access the database all data is provided

by the business layer in the form of XML streams. Any changes

made in the presentation layer need to be passed back to the

business layer before they can be applied to the database.

2.1 Severity of Errors
We categorize the severity level of error(s) during the execution

& operation of present model as follows:

Catastrophic: The system failures may cause to loss of life or

heavy damage to the system wherever it is installed.

Gradual: The severity level of this kind of error(s), which may

further be critical, marginal or negligible depending upon the

kind of application and operational environment.

Critical: may cause complete loss of system such as disaster and

applicable to all three layers presentation, application and

database of the model.

Marginal: may degrade the system gradually such as infected by

viruses, worms or network congestion and heavy load of data to

be processed.

Negligible: may lead to minor failure of the system and

applicable to the presentation & database layer such as incorrect

username & password, invalid user’s input, database not found

or does not exist, ODBC driver failure or rebooting the system

in worst case.

Terminology
Node: A hardware element on a network generally a computer

\PC \desktop\ laptop that is installed with a NIC

card.

Client: A node that makes request of services in a network or

that uses resources available through the servers.

Server: A node that provides some type of services to the clients

such as network resources/ files or distributed

services.

Client-Server computing: defined as processing capability or

available information distributed across multiple

nodes.

Software Defect: Any undesirable deviation in operation of the

software from its intended operation, as defined in

the software requirement specifications.

Errors: are human actions that result in the software containing a

fault. Examples of such faults are the omission or

misinterpretation of the user’s requirements, a

coding error etc.

Faults: are manifestations of an error in the software. If

encountered then it may cause a failure of the

software.

Failure: is the inability of the software to perform its mission for

function within specified limits. Failures are

observed during testing and operation.

Failure rate: refers to the rate of occurrence of Failure (ROCOF)

depending upon the context. The ROCOF is the

unconditional rate of occurrence of a failure at a

point in time.

Software failure: a failure caused by a software fault. It is to be

noticed that software itself does not fail. Faults

already present in the software lead to failure of the

system under certain conditions.

NHPP: The non-homogeneous Poisson process model

(NHPP) represents the number of failures experienced

up to time t is a non-homogeneous Poisson process {N

(t), t 0}. The NHPP based model provides an

analytical framework for describing the software

failure phenomenon during testing. The main issue in

the NHPP model is to estimate the mean value

function of the cumulative number of failures

experienced up to a certain point in time.

Assumptions:

 The software failure-occurrence phenomenon is

described by an NHPP.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

11

 The software faults detected during the testing

phase are corrected certainly and completely, that is

no new faults are introduced into the software

systems during the debugging phase. On a failure

observation an immediate effort takes place to

locate the causes of the failure & the error removal

takes very small amount of time, which is nearly

negligible.

 Software is subject to failures during execution

caused by faults remaining in the software.

 The software is developed for three-tier client

server based systems.

 A finite number of test cases are prepared to ensure

that the software works according to the

requirements and specifications. Each test case is

designed to execute a finite number of instructions.

 The error removal intensity per execution is

proportional to the remaining errors in the software

at any point of time.

Notations:

a total number of errors in the software

N(t) number of errors corrected up to time t

m(t) the mean value function or expected no. of faults

detected or removed by time t

b1 error correction rate during the initial testing phase of

presentation layer

b2 error correction rate during the testing phase of

business layer

b3 error correction rate during the final testing phase of

database layer

r1 error generation factor due to correction of errors in

initial testing phase of presentation layer

r2 error generation factor due to correction of errors in

testing phase of business layer

r3 error generation factor due to correction of errors in

testing phase of database layer

t1 time spent in initial testing phase at presentation layer

t2 time spent in testing of business layer

t3 time spent in testing at database layer

t total time spent in all the three phases of testing

λ(t) intensity function for NHPP models or fault detection

rate per unit time

Tk software life cycle length

R(t) reliability of the software developed

F(t) cumulative distribution function (cdf)

f(t) probability distribution function (pdf)

MTTF mean time to failure

3. MATHEMATICAL MODEL

We consider a software in which failures are caused by software

errors. Let {N (t), t 0} be the total number of errors corrected

up to time t during the total testing phase. A stochastic process

{N (t), t 0} is a non–negative process where N(t) is a random

variable which represents the cumulative no of faults detected

up to a testing time t. The fault detection process is described by

NHPP with the mean value function m(t) as follows:

 {m (t)}n exp [- m(t)]}

Pr {N (t) = n} =

 n !

where n=0, 1, 2…

m (t) = ∫t λ (x) dx (1)

 0

where Pr{N(t)} denotes the probability of event N(t) and m(t)

is the mean value function, which represents the expected

cumulative no. of faults detected in the testing time interval

(0,t] and λ(t) is an intensity function which represents the

fault-detection rate per fault. The NHPP model is

characterized by its mean value function defined as follows:

m(t) = a (1 – e –bt) a>0, b>0 (2)

where a, is the expected no of initial inherent fault before

testing and b is the software failure occurrence rate per

inherent fault.In three-tier client server based model there are

three type of faults and some faults are easier to detect then

others based upon the efforts required to detect the cause of

failure in order to fix and remove it. In the present model

these faults are associated with presentation layer, business

layer and database layer during the total testing phases. Also

we consider that error correction rate and error generation

factor is different for both these phases, i.e. during the initial

testing phase more errors are likely to occur which

consequently decreases as the testing progresses. During the

process of error correction at presentation layer, a few errors

may be generated at business layer and database layer, which

will affect the total performance of the system. Thus m(t) for

the proposed model can be written as:

 3

m(t) = a (1 – exp[-bi ti])*(1- ri) (3)

 i=1

where t1 + t2 + t3 t, a > 0,

0 < b3 < b2 < b1 < 1, 0 < ri < 1

For three types of fault at each layer the intensity function can

be written as dm(t) / dt that is

 3

 λ(t) = a {bi exp[-bi ti]-ri exp[-bi ti]bi}

i=1

 3

 = a bi exp [-bi ti] (1- ri) (4)

 i=1

This is the instantaneous error detection rate, i.e. the expected

number of detected errors per unit time at time t. Also we can

derive the expressions for various software reliability

assessment measures from this new model given by eq. (3).

The expected no. of faults remaining at the system testing

time t which is obtained by taking expectations of random

variables {N(∞) – N(t)}i.e.

 n(t) = E [N(∞) – N(t)] (5)

The error detection rate per error (per unit time) at time t is

defined by dp(t) as follows:

 λ(t)

dp(t)=

 [a – m(t)]

 3

 a (1 – exp [-bi ti] (1- ri)

 i=1

 = 3

 a- a (1 – exp [-bi ti] (1- ri)

 i=1

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

12

 3

 a bi exp [-bi ti] (1- ri)

 i=1

 =

ri + exp [-bi ti] - ri exp [-bi ti] (6)

Applying the boundary conditions when t=0 and t=∞ we get

 3

 dp(0) = bi (1- ri) and dp(∞)=0 (7)

 i=1

The expected no. of errors remaining in the software at time t

is given by N(t)=a – m(t) i.e.,

 3

 N(t)= a [(1 - ri) exp(- bi ti) + ri] (8)

 i=1

The probability that a software failure does not occur during

(s, s + x), given that the last occurrence time of a software

failure was s, is given by 3

R(x / s)=exp(-a [{exp[-bi s]–exp[-bi (s + x)]} ((1 - ri)

 j=1 + ri]) (9)

The conditional probability function Rp(x /s) is known as

software reliability of NHPP model with m(t). The mean

value function m (t) represents the number of errors actually

corrected.

4. DATA COLLECTION

The sanctity of collected failure data depends on how

accurately & efficiently we observe failure data from real life

software products of modern computer systems which is very

complex procedure and that need to be addressed further

separately for better validation of the model by the

community of researchers and practitioners. In this paper we

have taken software failure data on various projects from the

Software Life Cycle Empirical/Experience Database (SLED)

published by Data & Analysis Center for Software (DACS).

Further to validate our model for estimating reliability growth

of three-tier client server system we have applied the model

to the data set of On-line Data Entry Software Package test

data (Obha 1984a) and Real-Time Control Systems (Hou et

al., 1997) assuming that the no. of failures-detection data set

is observed from the system-testing phase after confirmation

of the integration of all modules\ software components. The

observation of failure and repair times can be represented by

t1 ,t2…….,…. tn where ti represents the time of failure of ith

unit. It is assumed that each failure represents an independent

sample from the same population. The population is the

distribution of all possible failure times and may be

represented by f(t), R(t), F(t) or λ(t). Therefore the basic

problem reduces to determine the best failure distribution

implied by the n failure times comprised in the sample. In all

cases the sample is assumed to be a simple random or

probability sample. A simple random sample is one in which

the failure or repair times are independent observations from

a common population. If f(t) is the probability density

function of the underlying population then f(ti) is the

probability density function of the ith sample value. Since the

sample comprises of n independent values therefore the joint

probability distribution of the sample is the product of n

identical and independent distributions i.e.

ft1,t2… tn(t1,t2… tn)=f(t1)f(t2).,f(tn) (10)

Table 2. Failure Datasets applied to the model

S.No. Project

Description

Number

of

Failures

Source #

1 Real Time

Command &

Control

136

DACS

2

Real Time

Command &

Control

54

DACS

3

Real Time

Command &

Control

58

DACS

4

Real Time

Command &

Control

53

DACS

5
Commercial

Subsystem
73

DACS

6

On-line Data

Entry Software

Package

46

Obha 1984

7
Real-Time

Control Systems
481

(Hou et al.,

1997)

4.1 Method of Parameter Estimation

The value of six unknown parameters of the proposed model

given in equations (3) and (4) are obtained by the method of

Maximum Likelihood Estimation (MLE). Let X be the

discrete variable representing the no. of trials necessary to

obtain the first failure. Here we assume that the probability of

failure remains a constant p and each trial is independent then

Pr{X = x } = f(x) = (1- p) x -1 . p (11)

where x=1,2,….

and which is the probability of (x-1) successes i.e. probability

=(1- p) x -1 followed by a failure probability (probability =

p).If x1 , x2…….,…. xn represents a sample of size n from this

distribution then from equation (10) the joint distribution may

be written as:

fx1 , x2… xn (x1 , x2…… xn) = f(x1)f(x2).,f(xn).

=(1-p) x1-1.p(1-p) x2-1.p (1-p) x3-1.p…,(1-p) xn-1.p

 n

=pn.(1-p) exp[(xi - 1)] (12)

 i=1

Equation (12) is called likelihood function and represents the

probability of obtaining the observed sample. Since equation

(12) contains the unknown parameter p we find a value of p

consistent with the observed sample. If a value of p is found

that maximize the likelihood function then it also maximize

the probability of obtaining the observed sample.

 n

max g(p) = pn.(1-p) exp[(xi - 1)]

 i=1

 for 0<=p<=1

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

13

Therefore we solve this equation to get maximum of a

function by finding the point at which the first derivative is

equal to zero as follows:

 n

max log g(p) = log[pn.(1-p) exp[(xi - 1)]]

 i=1

 n

 = n log p + (xi - 1) log(1 – p) (13)

 i=1

Now putting first derivative of max log g(p) = 0 we get i.e.

d/dp [max log g(p)] = d/dp [n log p +

 n

 + log (1 – p)] = 0

 i=1

 n

n / p + (xi - 1) (–1) / (1-p) = 0

 i=1

 n

n / p (1 – p) = (xi - 1)

 i=1

 n

max (p) = n / xi (14)

 i=1

where max (p) is defined as the Maximum Likelihood Estimator

of the given distribution.

4.2 Model Validation

Based on the data available given in table (2) the performance

analysis of the proposed model is measured by the four common

criteria SSE as the sum of squared errors, R-square, Adjust R-

square & RMSE for the model comparison of goodness of-fit as

follows:

Sum of square of Error (SSE): This statistic measures the

deviation of the responses from the values of responses. A value

closer to 0 indicates a better estimation. It is calculated as:

 k n

SSE = [yij - mj(ti)]
2 (15)

 j=1 i=1

where yij is total number of type j failures observed at time ti

according to the actual data mj(ti) ,the estimated cumulative

number of type j failures at time ti for i =1,2,…,n and j =1,2,…,

k.

Mean Square of fitting Error (MSE): It is calculated as:

 n

 [mj(ti) - yij]
2 (16)

 i=1

MSE =

 n

where yij(mj(ti)) is the actual estimated value of the total number

of errors removed in interval (0, t]. The MSE measures the

distance of a model estimate from the actual data with the

consideration of the number of observations and the number of

parameters (N) in the model.

RMSE – is defined as the root of mean squared error and for a

computed value closer to 0 it indicates a better approximation &

estimation.

That is,

 RMSE = MSE (17)

R-square: This statistic measures how successful the model is in

explaining the variation of the data, which may be defined as the

square of the correlation between the response values and the

predicted response values. It is also called the square of the

multiple correlation coefficients and the coefficient of multiple

determinations. R-square can take on any value between 0 and 1,

with a value closer to 1 indicating a better estimation of the

model. For example if R-square = 0.8234 means that the

estimation explains 82.34% of the total variation in the data

about the average.

Adjusted R-Square: The degrees of freedom uses the R-square

statistic and adjusts it based on the residual degrees of freedom.

The residual degree of freedom is defined as the number of

response values n minus the number of fitted coefficients m

estimated from the response values.

 v = n-m (18)

where v indicates the number of independent pieces of

information involving the n data points that are required to

calculate the sum of squares. A value closer to 0 indicates a

better estimation of the model.

5. RESULT ANALYSIS

In this section we show the result of our model applied to a set

of failure data extracted from various projects listed in table2.

Figure (2) to figure (12) exhibits the result of various computed

quality attributes using equations (3) and (4) such as failure

intensity λ(t), reliability of the software at any instance of time

during testing phase R(t), cumulative distribution function

(CDF), probability distribution function (PDF), mean time to

failure (MTTF) & variance factor. Here we have modeled the

daily defect arrival data during the testing phase of system based

on the cumulative failures, length of failure interval and the day

of failure it was reported whereas tracking of the data for

software reliability estimation has been done on a calendar-time

basis and the testing effort is homogeneous throughout the

testing phase. We have simulated the seven failure datasets

taken as one-dimensional data with the help of non-linear fitting

functions using Matlab 7.0.1 under Windows XP environment.

Table 3. Goodness of fitness for different projects

Goodness

of fitness

criteria

SSE R_

Square

Adj. R-

Square

RMSE

Project 1 0.04451 0.9754 0.9703 0.03423

Project 2 0.00744 0.4824 0.2237 0.02158

Project 3 0.00008 0.9997 0.9995 0.00298

Project 4 0.00002 0.9999 0.9998 0.00147

Project 5 0.20080 0.5353 0.3495 0.03168

Project 6 0.10920 0.5693 0.2822 0.09539

Project 7 0.34290

0.8517 0.8401 0.18330

5. 1 OBSERVATIONS

Typically software reliability growth model estimate the time to

next failure or the expected number of remaining failures or

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

14

when to stop the testing and release the product to the customer.

Time is measured in terms of test time including CPU execution

time, lines of code tested, system operating time as a calander

time i.e. the duration of testing such as no. of hours \days\weeks

& months.As a result the probabilistic models are used in

describing software reliability and normally a decreasing failure

rate is observed if software failures are fixed as they occur and

the fix does not generate any new failures. Thus software testing

can be likened to reliability growth testing in which the software

is executed in an attempt to discover failure, analyze the causes

of failure mechanism and initiate the corrective measures.

Following are the observations made from applying the model

on seven projects listed in table (2) and table (3). The different

reliability attributes computed using datasets of project (6) and

(7) are shown in figures (9) to figure (13) with significant and

improved results. The present model exhibits constant failure

rates and the exponential distribution in many respects, which is

the simplest reliability distribution to analyze and reveals from

the observations that if the failure rates of all failure modes of a

component are constant & independent then the overall failure

rate of the component is also constant. There are several

interesting physical processes that give rise to the cause why

have we chosen exponential probability distribution for

implementing our model. A constant failure rate implies

completely random and independent failures over time and

hence results in lack of memory. In fact these three

characteristics related to randomness, constant failure rates and

memorylessness more or less exhibit different form of same

phenomenon.

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

Fa
ilu

re
 In

te
ns

ity

Failure intensity vs Testing time: applied to project1

Testing time(days)

fitted data

Actual data

Figure 2. Failure intensity vs. testing time

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

fa
ilu

re
 ra

te

Failure Rate vs testing period

Testing time (days)

Fitted data

Actual data

Figure 3. Failure intensity vs. testing time

0 2 4 6 8 10 12 14 16 18 20
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Re
lia

bi
lit

y
fu

nc
tio

n

Reliability function vs testing

Testing time (in days)

Fitted data

Actual data

Figure 4. Reliability function vs. testing time

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fa
ilu

re
 in

te
ns

ity

Failure Intensity vs Testing period

Testing Time (days)

fit 1

Rel vs. time

Figure 5. Failure intensity vs. testing time

0 20 40 60 80 100 120
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
el

ia
bi

lit
y

fu
nc

tio
n

R
(t

)

Reliability function vs testing time

Testing time (days)

Fitted Data

Actual data

Figure 6. Reliability function vs. testing time

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

F
a
ilu

re
 R

a
te

 L
a
m

b
d
a
(t

)

Failure rate vs Testing time

Testing time (days)

Fitted data

Actual data

Figure 7. Failure intensity vs. testing time

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

15

0 5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

ia
bi

lit
y

fu
nc

tio
n

Reliability Vs Testing

Testing time (days)

Fitted data

Actual data

Figure 8. Reliability function vs. testing time

0 20 40 60 80 100 120

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

Testing period (days)

R
(t

)

Reliability function

observed data

Reliability function

Figure 9. Reliability function vs. testing time

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Testing period (days)

C
u

m
m

u
la

ti
v
e
 d

is
tr

ib
u

ti
o

n
 f

u
n

c
ti

o
n

 (
C

D
F

)

Reliability & CDF

CDF

Reliability function

Figure 10. Reliability & CDF vs. testing time

30 40 50 60 70 80 90 100 110 120
0

0.2

0.4

0.6

0.8

1

Cummulative no of errors

V
a
ri

a
n

c
e
 f

a
c
to

r

Variance factor

Variance factor

Cummulative no of errors

Figure 11. Cumulative errors vs. Variance factor

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Testing period (days)

M
T

T
F

Reliability & MTTF

MTTF

Reliability

Figure 12. Cumulative distribution function vs. testing time

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7
x 10

-3

Testing time (days)

P
ro

b
a
b

il
it

y
 d

is
tr

ib
u

ti
o

n
 f

u
n

c
ti

o
n

PDF

observed data

PDF

Figure 13. Probability distribution function vs. testing time

6. CONCLUSION & FUTURE WORK

Based on the above approach it seems to be quite feasible to

develop such a software reliability growth model for a three-tier

client-server system. However, in order to implement the present

model it is necessary to partition the failures and defects into

three categories associated with each presentation, application &

database layer of the present model. In this paper we have

designed a software reliability growth model for three-tier

client-server system based on nonhomogeneous Poisson process,

which incorporates the exponential software reliability growth

model for estimation and prediction of software reliability. We

have discussed various aspect related to the severity level of

errors and its impact on the respective layer of the proposed

model. The model also has been validated using failure data of

seven real life datasets of various projects released by software

reliability dataset DACS. Further if we are able to estimate the

values of the parameters more precisely then we can enhance

software reliability assessment measures more accurately with

the help of our model in comparison with the conventional

existing models.

However we have assumed a perfect debugging environment to

validate and implement the present model, which may not be

realistic in many real life development processes that is the

removal of all software error(s) or faults is performed perfectly

at each particular layer of the model during the testing phase.

Therefore to overcome this kind of deficiency we need to collect

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

16

more realistic data little bit more precisely from real life projects

released under the imperfect debugging environment of modern

computer systems with the possibility of introducing new faults

at different layers of the model. Since the software testing

consumes a large amount of efforts required to locate and fix the

error during the testing phase of a software system, which

consequently increase the allocated budget for the development

of the system. Therefore, in the future it is very much essential

and required to develop a mechanism of when to stop the testing

process and release the products to the end user with higher

quality, within budget and without any delay.

REFERENCES

[1] A Software Reliability Growth Model for a Distributed

Development Environment Electronics and

Communications in Japan, Part 3, Vol. 83. No. 12, 2000,

Shigeru Yamada, Yoshinobu Tamura and Mitsuhiro

Kimura.

[2] Determination of software release instant using a

nonhomogeneous error detection rate model Microelectron

Reliability, Vol. 33. No. 6. pp. 803-807, 1993, printed in

Great Britain, K.K. Aggarwal and Yogesh Singh.

[3] Software Reliability Engineering: more reliable software

faster and cheaper second edition published by TMH

publications 2007, Musa J D.

[4] Software reliability model for modular structure IEEE

Transactions on Reliability, R-28, No. 1979, Littlewood B.

[5] Topics in safety, reliability and quality Reliability

Engineering published by Kluwer publications 1993, K.K.

Aggarwal.

[6] Software reliability modeling published by World

Scientific publications 1991, Min Xie.

[7] System Software Reliability published by Springer Series

in Reliability Engineering 2006, Hoang Pham.

[8] Handbook of Software reliability engineering edited and

published by IEEE computer society press and TMH

publications 2007, Michael R Lyu.

[9] Operational profile in software reliability engineering IEEE

software 1993, Musa J D.

[10] Software Reliability Engineering for Client-Server Systems

Proceedings of the Seventh International Symposium on

Software Reliability Engineering (ISSRE ’96), 1071-

9458/96, 1996 IEEE, Norman F Schneidewind.

[11] An Architecture-Based Software Reliability Model

Computer Science Department, SUNY Albany 2000, Wen-

Li Wang, Ye Wu, Mei-Hwa Chen.

[12] Software Engineering: programs, documentation &

operating Procedures published by New Age International

publications 2007, K.K. Aggarwal and Yogesh Singh.

[13] Post-Release reliability Growth in Software Products ACM

Transactions on Software engineering and Methodology,

Vol. 17, No.4, Article 17, pub. Date: August 2008, Pankaj

Jalote, B Murphy, Vibhu Saujanya Sharma.

[14] Contributions to Hardware & Software Reliability

published by World Scientific publications 1999, P K

Kapur, R B Garg, S K Kumar.

[15] Software Reliability Carnegie Mellon University 18-849b

Dependable Embedded Systems Spring 1999 Authors:

Jiantao Pan ,jpan@cmu.edu , Jiantao Pan.

[16] Probability and Statistics with Reliability, Queuing and

Computer Science Applications, second edition published

by John-Wiley publications 2007, Kishore S Trivedi.

[17] Software Metrics and Reliability Software Reliability

Engineering the 9th International Symposium, 1998,

Germany, Rosenberg, L., Hammer, T., Jack S.

[18] Metrics and Models in Software Quality Engineering

published by Pearson education 2008, Stephan H Kan.

[19] Reliability and maintainability engineering published by

TMH publications by Charles E. Ebeling 2007.

[20] An Assessment of Testing-Effort Dependent Software

Reliability Growth Model, IEEE Transactions on

Reliability, Vol, 56,No,2, June 2007 by Chin-Yu Huang,

Sy-Yen Kuo, Michel R. Lyu.

mailto:%20jpan@cmu.edu
mailto:%20jpan@cmu.edu

