©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 - No. 16

RESOURCE MANAGEMENT IN AMBIENT NETWORK
USING NETWORK PROCESSOR

1 Mrs. K.Sashi Rekha, 2 Mrs. Nagalakshmi Venugopal, 3 Mr. D.Selvam

1. Mrs.K.Sashi Rekha M.E.,Lecturer(Computer Science and Engineering),
Dr.N.G.P. Institute of Technology, Coimbatore.

2. Mrs.Nagalakshmi Venugopal, M.E (P.hd).,Lecturer (Computer Science and Engineering),
Dr.N.G.P. Institute of Technology, Coimbatore.

3. Mr.D.Selvam M.E. Lecturer (Information Technology),
Dr.N.G.P. Institute of Technology, Coimbatore.

ABSTRACT

The Ambient Network project aims at designing a future networking environment where today’s networks (cellular, wireless,
fixed) are seamlessly integrated offering a richer and smarter networking experience to applications and users. An efficient
resource management method to deal with different characteristics of the heterogeneous technologies is the need of the hour. IXP
2800 network processor is the high end device designed for 10 gigabit data rates with typical usage in high speed packet
forwarding systems and ambient networks. This project aims at using network processors for solving resource management
issues in ambient networks. The problem of fair allocation among contending traffic flows on a link has been extensively
reasearched. Moreover, conventional resource scheduling algorithms depend strongly upon the assumption of prior knowledge of
network parameters and cannot handle variations or lack of information about these parameters. In this paper a novel scheduler
called the Composite Bandwidth and CPU Scheduler (CBCS). Which jointly allocates the fair share of the link bandwidth as well
as processing resource to all competing flows. CBCS also uses a simple and adaptive online prediction scheme for reliably
estimating the processing time of the packet.

Keywords:

Ambient Network,Network Processor,Scheduling,Distributed Applications,Packet-Switched networks

1.0 INTRODUCTION

Recent Technology has become indispensable to
human life. Today number of network offers
different kind of services to unlimited number of
end users, but they are not getting satisfactory
services from service provider. For instance
existing mobile and wireless link layer
technologies like Wireless Local Area Network,
Global System for Mobile Communication, in
third generation network, etc, lack a common
control plane in order to enable end-users to
benefit fully from the offered access
connectivity. In addition access to these

networks is often restricted due to security and
business consideration. Although static, pre-
established roaming agreements can extend the
scope of these subscriptions to some other
networks, there is no technology to automatically
and transparently select the best and cost

effective link for the end-user. Major factor that
affects the services offered by these networks is
congestion.

The solutions for these problems are provided in
next generation communication networks with
coexistence of multiple technologies and user
devices of integrated fashion. One such
technology is Ambient Network. Ambient
Network aims to provide solutions encountered
in current mobile and wireless networks. As
ambient network compose and decompose,
topology and traffic patterns changes rapidly and
makes it difficult to rely on long-term network
planning and dimensioning .To overcome these
difficulties, mechanisms are needed to
dynamically adapt changes in traffic demand and
to utilize the available resources fairly. In this
project a new networking concept known as
Ambient Control Space and its functionalities are

122

©2010 International Journal of Computer Applications (0975 - 8887)

introduced and discussed about the design of

congestion control .In this project we also

identify and analyze the challenges of ambient

network pose to resource management.

The main objective and goal of this project is to

make better use of available resources by

adapting the routing function to the current

traffic situations. So that we can

+« Maximize the throughput.

¢+ Increase Fairness in resource
allocation.

+« Toincrease the packet transmission
rate with minimum delay.

2.0 AMBIENT NETWORK

The Ambient Network project aims at creating
scalable and affordable network solutions for
mobile and wireless systems beyond
3G.Ambient Network (AN) contains a set of one
or more nodes and devices, which share a
common control plane called the Ambient
Control Space (ACS). It aims to enable the
cooperation of heterogeneous networks
belonging to different operator or technology
domains to overcome the difficulties encountered
in current generation of network. Norbert
Niebert, Andreas Schieder (April 2004) has
analyzed the formation of Ambient Network
based on three-design principle,

«» Ambient Networks build upon Open
Connectivity and Open Networking
functions.

« Ambient Networks are based on Self-
Composition and Self-Management.

< Ambient Network functions can be
added to Existing Networks.

Architecture and Components of Ambient
Networks

ASI

Context
Information Naming
Ambient Multi-Radio
Routing Connectivity Resource
Group Management
Information
ARI
Overlay
Composition Support
Agreement Layer
Traffic
engineering

Fig. 1: Components of Ambient Network

Volume 1 - No. 16

2.1 Ambient Control Space

The ACS (Ambient Control Space) is the
internal of an Ambient Network. It has the
functions that can be accessed and it is in full
control of the resources of the network. Ambient
control space can be subdivided into the actual
control functions and the control space
framework functions, which are not explicitly
shown but assumed to implement the loop
surrounding the connectivity plane. Today’s
Internet Networking Technology according to
Norbert Niebert, Andreas Schieder (April 2004)
lack this common plane .The control space
framework comprises all functions necessary to
allow the control functions to plug into control
space, execute their control tasks and coordinate
with other functions present in the control space
as said by Chen .Z, M.Mohamed ali (2004).
These ACS functions can be used as a plug and
play feature in existing networks.

There are three interfaces present to
communicate with an ACS. These are:

«» ANI: Ambient Network Interface. If a
network wants to join in, it has to do so
through this interface.

< ASI: Ambient Service Interface. If a
function needs to be accessed inside the
ACS, this Interface is used.

< ARI: Ambient Resource Interface. If a
resource inside a network needs to be
accessed, this interface is used.

2.2 Functional Area (FA)

FA is a concept to group functions into topic —

related sets for easier reference and discussion.

In this project, network processor is used inside

gateways i.e. inside ANI and performs functions

such as Traffic management, Queue
management, Packet Processing, Packet
classification etc. Network Processor used here
mainly concerns with congestion control

Functional Area. Congestion control Functional

Area consists of connectivity plane (ACY) with

some functionality as depicted in Figure 2 .In

this project these functions are assumed to be
performed by network processor. Collections of
these functionalities are called CC-FA-CY

(congestion control Functional area connectivity)

and CC-FA-CS (Congestion control Functional

Area Control space) respectively. CC-FA-CY

includes mechanisms and techniques to interact

with legacy solution such as TCP.CC-FA-CS

123

©2010 International Journal of Computer Applications (0975 - 8887)

includes all the functions that are necessary to
interact with all other functional areas.

Fig. 2: Congestion control Functional Area.

2.3 Network Composition

Network Composition as demonstrated by Jorge
Andres Colas (2005) is a new architectural
concept introduced in ambient Networks to
enable control — planes inter working and sharing
of control functions among networks. Different
networks may cooperate with each other
dynamically for various purposes. The main
intention as analyzed by Jorge Andres Colas
(2005) is to provide inter working without
manual intervention and prior signing of
agreements between different network operators.
To ensure a smooth and seamless cooperation
agreement has to be made among all networks
involved. A new composed network may be
created when individual AN make an agreement
to compose.

Generic Ambient Network signaling protocol
suggested by Jorge Andres Colas (2005) is used
to exchange signaling information of functional
areas inside ACS.A composed network consists
of all logical and physical resources and services
each of its members contribute according to the
composition agreement.

2.4 Characteristics of Ambient Networks
The characteristics of Ambient Networks are:

«» Heterogeneity: Ambient Networks are
based on a federation of multiple
networks of different operators and
technologies.

< Mobility: In dynamically composed
network architectures, mobility of user
group clusters would support effective
local communication.

« Composability: An Ambient Network
can be dynamically composed of
several other networks. Cooperating
Ambient Networks could potentially
belong to separate administrative or

Volume 1 - No. 16

economic entities. Hence, Ambient
Networks provide network services in a
cooperative as well as competitive way.
The Ambient Network Interface (ANI)
facilitates cooperation across different
Ambient Networks.

«» Explicit Control Space: Provisioning (at
least a subset of) the Ambient control.

«» Space Functions: When Ambient
Networks and their control functions are
composed, care must be taken that each
individual function controls the same
resources as before: by composing two
Ambient Networks, resources shall not
become a common asset but rather an
asset that can be traded.

3.0 Network Processor

Network Processor (NP) are network devices
specifically designed to store, process and
forward large volumes of data packets at wire
speed with strong programmability. Processing
of packet at wire speed has resulted in the
creation of Integrated Circuits that are optimized
to deal with this form of packet data, such as
ASIC-based switches and routers. General-
purpose processor offer programming flexibility,
but they lack packet-processing performance.
Network Processor has specific features or
architecture that is provided to enhance and
optimize packet processing within these
networks.

3.1 Intel IXP2800 Network Processor

The 1XP2800 is the high-end device of a family
of network processors developed by Intel
Corporation. It is designed for 10 Gigabit/sec
data rates, with typical usage in packet
forwarding systems. According to Matthew
Adiletta, Mark Rosenbluth, Debra Bernstein
(Aug 2002), It can be configured with large
amounts of dynamic and static storage for
buffering hundreds of thousands of packets for
up to a million Internet Transmission Control
Protocol (TCP) connections.

3.2 The XScale™ Processor

The XScale processor is compliant with the
ARM Version 5TE (Advanced Risc Machines),
and runs at 700MHz.Normally, it is used as a
system control plane processor, handling
exception packets and doing management tasks.
It contains independent 32KB instruction and
data caches, and a full capability memory
management unit. The XScale has uniform
access to all system resources, so it can

124

©2010 International Journal of Computer Applications (0975 - 8887)

efficiently communicate with the microengine

though data structures in shared memory.

3.3 The IXP2XXX Microengine

Several goals guided the specification of the ME:

« High frequency to allow for sufficient
instructions per packet. The ME has a six-
stage pipeline and runs at 1.4 GHz.

« Large register set. Having many registers
minimizes the need to shuffle program
variables back and forth between registers
and memory.

< Multiple threads. Given the disparity in
processor cycle times vs. external memory
times, a single thread of execution often
blocks waiting for external memory
operations to complete. Having multiple
threads available allows for threads to
interleave operation—there is often at least
one thread ready to run while others are
blocked. This makes more productive use of
the other ME resources, which would
otherwise be idle. There are eight hardware
threads available in the ME. Each of the
eight threads will always be in one of four
states.

+« Inactive—some applications may not require
all eight threads. Unused threads can be kept
in an inactive state by setting the appropriate
value in a configuration register.

«» Executing—the executing thread is the one
in control of the ME. Its PC is used to fetch
the instructions that are executed. A thread
will stay in this state until it executes an
instruction that causes it to go to sleep state
(there is no hardware interrupt or pre-
emption; thread swapping is completely
under software control). At most, one thread
can be in executing state at any time.

+» Ready—In this state, a thread is ready to
execute but is not because a different thread
is executing. When the executing thread
goes to sleep state, the MEs thread arbiter
selects the next thread to go to the executing
state from among all the threads in the ready
state. The arbitration is round robin.

¢ Sleep—In this state, the thread is waiting for
some external event(s) to occur (typically,
but not limited to, an 10 access). In this state
the thread does not arbitrate to enter the
executing state. At most, one thread can be
in executing state at a time; any number of
threads can be in any of the other states.

3.4 Registers
Each ME contains four types of 32-bit data path
registers:

Volume 1 - No. 16

X3

o

256 general-purpose registers

512 transfer registers

128 next neighbor registers

640 32-bit words of local memory
GPRs are used for general programming
purposes. They are read and written exclusively
under program control. GPRs, when used as a
source in an instruction, supply operands to the
execution data path. When used as a destination
in an instruction, they are written with the result
of the execution data path.

Transfer registers are used for transferring data
to and from the ME and locations external to the
ME (for example, DRAMs, SRAMs, etc).

Next Neighbor (NN) registers are used as an
efficient method to pass data from one ME to the
next, for example, when implementing a data-
processing pipeline.

Local Memory (LM) is addressable storage
located in the ME. LM is read and written
exclusively under program control.The
distinction between LM and the registers
described above is that the LM address is
computed by the program at run-time, whereas
the register addresses are determined at compile
time and bound in the instruction.

X3

o

X3

o

X3

o

3.5 The DRAM Cluster

The DRAM cluster provides three independent
DRAM controllers, each of which controls
external Rambus DRAMs (RDRAMs). The
reason for three channels is to provide sufficient
data buffering bandwidth for 10Gb network
applications. DRAMs are a good choice for a
data buffer because they offer excellent burst
bandwidth and are much denser and cheaper per
bit relative to SRAM. Each DRAM controller,
running at 133MHz provides 17Gb/s of
bandwidth, shared between reads and writes. The
three DRAM controllers provide hardware
interleaving of the DRAM address space (often
referred to as striping). This is done to spread
accesses evenly to prevent “hot spots” in the
memory.

3.6 The SRAM cluster

The SRAM cluster consists of four independent
SRAM controllers, each of which controls
external Quad-Data-Rate (QDR) SRAMs. The
reason for four channels is to provide sufficient
control information bandwidth for 10 GB
network applications. SRAMs are a good choice
for control information, which tends to have
many small data structures such as queue
descriptors and linked lists. Each SRAM
controller, running at 200MHz, provides

125

©2010 International Journal of Computer Applications (0975 - 8887)

800MBY/s of read bandwidth and 800MB/s of
write bandwidth. In addition to the normal read
and write access, the IXP2800 SRAM controllers
provide three additional hardware functions.

+« Atomic read-modify-write operations:

increment, decrement, add, subtract,

bit-set, bit-clear, and swap.
The atomic operations are useful for
implementing software semaphores. They can
also be used for multiple processes that modify a
shared variable without using conventional
mutex to obtain ownership. This is more
efficient, since it eliminates the mutex operation
altogether in this case.

¢ Linked-list queue operations.
This hardware accelerates enqueue and dequeue
to linked-list operations by eliminating the read-
to-write or read-to-read latency. For example, to
do an enqueue, software must read the current
list tail and then use it as an address to write the
new link to memory. The SRAM controller
keeps the tail address in on-chip registers and
does the enqueue write locally; this saves the
time that would have been spent by the
microengine to get the tail value and then simply
use it as the address for the write.

+ Ring operations.
A ring is also sometimes called a circular buffer.
It consists of a block of SRAM addresses, which
are referenced through a head and tail pointer.
Data is inserted at the tail of the ring and
removed from the head .The SRAM controller
keeps the head and tail pointers in on chip
registers and increments them as they are used.
The advantage is that multiple processors can
add data to and remove data from the rings
without having to use a mutex to obtain
ownership.

3.7 The Media-Switch-Fabric Interface
The Media and Switch Fabric (MSF) Interface is
used to connect an IXP to a physical layer device
(PHY) and/or a switch fabric. The MSF consists
of separate receive and transmit interfaces. Each
of the receive and transmit interfaces can be
separately configured. The receive and transmit
ports are unidirectional and independent of each
other. Each 1XP2800 port has 16 data signals, a
clock, a control signal, and parity signals. There
is also a flow control port consisting of a clock,
data, parity, and ready status bits, and it is used
to communicate between two 1XP2800 chips, or
an IXP2800 and a switch fabric interface. The
IXP2800 supports 10Gb/s inbound traffic and
15Gb/s outbound or 15Gb/s inbound and 10Gb/s
outbound.

Volume 1 - No. 16

Incoming packets are received into the Receive
Buffer (RBUF). Outgoing packets are held in the
Transmit Buffer (TBUF). The RBUF and TBUF
are both RAMs and store data in sub-blocks
(referred to as elements), and are accessed by
either the microengines or XScale™.The RBUF
and TBUF each contain 8KB of data. The
element size is programmable as 64 bytes, 128
bytes, or 256 bytes per element. The microengine
can read data from the RBUF to the microengine
inbound registers using the MSF [read]
instruction. The microengine can promote data
from RBUF to DRAM directly using the DRAM
[rbuf_rd] instruction. The microengine can
promote data into the TBUF along with status
via writes from the outbound transfer registers
using the MSF [write] instruction. The
microengine can control movement of data from
DRAM directly to the TBUF using the DRAM
[tbuf_wr] instruction.

3.8 Resource Allocation

Fair allocation of shared network resources
among multiple users is an intuitively desirable
property. The Link bandwidth is not the only
resource that is shared by the traffic flows as
they traverse the network. A routers processor is
often also a critical resource to which all
competing flows should have fair access. For
each incoming packet the router has to perform
several activities like computing checksum,
performing a forwarding table lookup,
processing variable length option, etc. As the
processing requirement of different packet vary
widely, the issue of fairness in the allocation of
the processing resources gains significance.

The overall fairness cannot be achieved by fair
sharing of the link bandwidth alone or merely
through fair allocation of processing resource
alone. Therefore, for better QoS and overall
fairness in resource allocations for the
contending flows, it is vital that the processor
and bandwidth scheduling schemes should be
integrated. A Novel scheduler called the
Composite Bandwidth and CPU Scheduler
(CBCS) Algorithm as discussed by Fariza
Sabrina, Salil S. Kanhere and Sanjay K.Jha is
used to allocate resource fairly.

CBCS can schedule multiple resources
adaptively, fairly, and efficiently among all the
competing flows. Scheduler employs a simple
and adaptive online prediction scheme called
modified Single Exponential Smoothing (SES)
for determining the packet execution times.
Packets from each flow are first processed by the
processor and then transmitted onto the output

126

©2010 International Journal of Computer Applications (0975 - 8887)

link. The joint allocation of the processing and
bandwidth resource is accomplished by the
composite scheduler, which selects a packet from
the input buffers and passes it onto the CPU for
processing. No scheduling action takes place
after the processing; the packets processed by the
CPU are stored in the buffer between the
processor and the link and are transmitted in a
first come first serve order.

4.0 ARCHITECTURE

Feed back CPU used and

SR-4 Flow id for a packet

SR-2

ME 0.0

SR-3 ME 1.3
()—» —

4.1 System Design

The design consists of modules for packet
reception, processing and transmission. This
design is implemented using Intel Network
Processor 1XP2800.Purpose of using Intel
Network Processor is that, when compare to
Motorola and IBM Intel Network Processor has
flexibility in programming so that it can adapt to
changing technologies. In addition Intel Network
Processor provides high performance. The
pipeline consist of following modules

RX Block

Packet Classification Block

Queue Management Block

Decision Making Block

TX Block

®,
0.0

R/
0.0

R/
0.0

R/
0.0

R/
0.0

The Proposed system comprises of Network
Processor IDE that provide a real time
environment and are designed to use inside
gateway. Here gateway is used as network
interface that is used to exchange information
about various networks. The checkpoint node
functionalities are embedded within this network
processor. Different types of real time and non
real time data are given as input to different
ports. The incoming packets are classified based

i @ Packet Processing 1

Volume 1 - No. 16

in TCP port as real time and non real time data
and are placed in separate queues. These queues
are served based on weighted round robin
scheduling algorithm. The selection of routes
and packets are transmitted in such a way that
network congestion is reduced. The efficiency of
packet transmission is also increased
considerably.

4.2 Allocation of Microengine

The checkpoint node functionalities are assigned
to each microengine as below; For example:
Microengine 0:0 is assigned to receive block.
Microengine 1:0 is assigned for CBCS
scheduler, Microengine 0:1,0:2,1:1,1:2 is
assigned for packet processing and forwarding
block, Microengine 1:3 is assigned for
transmitter block.

4.3 System Function

The sequence of traffic monitoring, packet

processing and optimum route selection in order

to avoid packet loss and hence to decrease the
overall latency is given below.

« System is configured. Script files are
added in startup menu.

< Data stream from external packet

generator or packgen are assigned to

input ports.

Start Simulation

Receive packet from MSF.Signal

indicates occurrence of packet at MSF

interface.

< Only after signaling, buffers and thread
are allocated to incoming packets. If
payload is large additional buffers are
allocated from buffer pool.

« Address of header and metadata are
stored in queue descriptor. Only
metadata information is handed over to
classification block. This metadata
information is written in SRAM
memory using command sram_write.

«» Packets are validated. Packets should
follow RFC1812 rule. Some of the rules
are packet header should be five bytes
of length, Time to live field should not
be zero, source and destination address
should not be class D or class E address,
Packets with zero address should be
dropped.

«» Packets are serviced using CBCS
algorithm.

«» Packets are then handed over to
transmit block using dispatch loop and

127

X3

8

X3

8

©2010 International Journal of Computer Applications (0975 - 8887)

are then transmitted Processing of next
packet is done. If no packet is present in
the interface its stop processing.

5.0 System Modules

5.1Packet Rx to CBCS Scheduler
Message Structure
On receiving a new packet, each thread in this
block checks the Start of Packet (SOP) and End
of Packet (EOP) bits of the packet, identifies the
port of the packet, allocates a DRAM buffer for
the packet on start of a new packet. Moves the
data from the receive buffer to DRAM buffer,
signals the next stage of the pipeline on EOP,
and cleans up the state for the next round. This
stage requires the following four operations.
They are 1) SRAM read to allocate a new buffer;
2) DRAM write to move the packet data into the
DRAM buffer; 3) SRAM write to update the
packet descriptor information; and 4) a scratch
ring write to signal the next pipeline stage when
the entire packet has been reassembled with the
packet data.
The packet Rx microengine sends enqueue
messages to the CBCS scheduler microengine
via SR-1 contain three long words of data.

5.2 CBCS Scheduler to Packet Processor
Message Structure

The CBCS scheduler to the packet processor
messages (via SR-2) contains 2 long words of
data. The packet processor microengines cache
(i.e., store) the first long word data in local
memory and uses the same data to generate
transmit message to the packet transmitter
microengine. Also the sopBufferOffset value is
used to access the packet metadata from the
SRAM memory using the dispatch loop
functions. The second long word value is used
later as a part of Packet Processor to Scheduler
feedback message.

5.2.1CBCS Implementation Details

Microengine local memory is used for keeping
CBCS scheduler variable such as Quantum (or
credit increment), packet counts for the flows or
queues, credit counter per flow, estimated CPU
requirements (per packet per flow) etc. The local
memory is used, as it's the fastest to access.
However, SRAM can be used for allocating the
variables when number of flows is extremely
high. The CBCS scheduler is implemented using
4 threads e.g., initialization thread, enqueue
thread, dequeue thread, and CPU prediction
thread. After initialization is completed, the

Volume 1 - No. 16

initialization thread sends signals to the enqueue,
dequeue, and CPU prediction threads to begin
their tasks as they wait on the initialization
thread's completion signal.

5.2.2 Initialization Thread

Initialization thread sets the SRAM channel CSR
to indicate that packet based enqueue and
dequeue would be done, i.e., enqueue and
dequeue of a full packet is done every time. The
thread also initializes SRAM queue descriptors
(and queue array) and the scheduler variables
(e.g., it initializes the value of quantum, credit
counter for the flows, estimated CPU
requirements per flow etc). After initializing the
scheduler variables, the thread terminates itself
so that the microengine thread arbiter excludes
this thread from its list.

5.2.3 Enqueue Thread

The enqueue thread waits for the signal from the
initialization thread before starting its infinite
loop. In each turn, the thread calls an SRAM API
(e.g. scratch get ring) to read an enqueue
message from SR-1 and specifies a signal
number (as a parameter to the API call). The
thread then swaps out to allow other threads to
run as the SRAM read operation would take
some time. After receiving the control back, the
thread checks the presence of the signal (i.e.,
checks whether the enqueue message read
operation is completed or not. Once the enqueue
message is read, it checks the validity of the
enqueue message, as there may not be any
message in the ring. If the thread receives an
invalid message, it does context swap and then
goes for the next turn. As shown earlier in table
1, the third LW of packet metadata contains the
packet size field. So, if the enqueue message is a
valid message, the thread reads the third LW of
the packet metadata from the SRAM using
another API (e.g. sram read) and extracts the
packet size for calculating the total resource
requirement (i.e. both the CPU and bandwidth)
for the packet. The CPU requirement data is
taken from the global variable (per flow), which
is constantly updated by the CPU prediction
thread. The calculated total resource requirement
is used by the dequeue thread for scheduling
purposes, and therefore it needs to be stored. The
enqueue thread calls an SRAM API (e.g., sram
write) to write back the resource requirement
data to the SRAM and specifies a signal number.
While the write operation is in progress, the
thread calls another API to enqueue the packet
info in the SRAM queue corresponding to the

128

©2010 International Journal of Computer Applications (0975 - 8887)

flow-id. It may be mentioned that the enqueue is
done using the packet Next pointer (calculated
using the sopBufHandle member of the enqueue
message). The thread increments the packet
counts for the queue and waits for the SRAM
write operation to be completed. The thread then
does a context swap and goes for the next round.

RR Calculations
The total resource requirement (RR) for the
incoming packets is calculated in nano seconds
(ns) using the following equation.
RR= CPU Cost of the packet (ns) +
Transmission cost of the packet (ns)
= CPU cost (ns) per CPU Cycle *
Estimated CPU Cycles Requirement
+ Transmission cost per byte (ns) * Packet
size in Bytes
Each microengine has clock frequency of 600
MHZ i.e., 600 millions cycles per sec. Therefore,
CPU cost (ns) per CPU Cycle =5/3 ns. For a 100
Mbits network interface, the transmission cost
per byte would be = 80 ns.

5.2.4 Dequeue Thread

Dequeue thread waits for signal from
initialization thread before starting its infinite
loop. In each CBCS round, the algorithm serves
all the active or backlogged flows (i.e., the flows
having one or more packets in the queue). So for
each flow i, the algorithm checks whether the
Queue Count i.e., QC [i] (stored in global
variables) is positive or not. If QC[i] is positive,
it adds quantum to the value of the Credit
Counter of the flow i (i.e. CCJi]), otherwise it
resets the CC[i] to 0 and tries to serve the next
active flow. While serving flow | within each
CBCS round, the algorithm checks whether both
the CCJi] and the QCJi] are positive or not. If
either of them is 0 or negative, the algorithm
does a context swap (so that other threads get a
chance to run) and then tries to serve the next
active flow. Otherwise, the algorithm calls an
SRAM API (e.g., sram dequeue) to dequeue a
packet info from the SRAM queue
corresponding to flow i and it waits for the
dequeue completion signal. After dequeue, it
decrements the queue count for flow i and then it
checks the validity of the dequeued buffer handle
(i.e., the packetNext ptr as enqueued in the
enqueue operation). If the buffer handle is
invalid, it does a context swap and then tries to
serve the next packet from the same flow i. For a
valid dequeue of a packet, the code calls another
SRAM API to read the resource requirement
(RR, which is the CPU requirement plus

Volume 1 - No. 16

bandwidth requirement in nano seconds) from
the 7th LW of the packet metadata in SRAM (as
it was stored there during enqueue operation) and
waits for the read operation to complete. On
completion of the SRAM read, the system
signals the thread and the code then decrements
the CC [i] by the value of RR. The thread then
generates a scheduler-to-processor message and
enqueues the message to the scratchpad ring 2
(SR-2). However, before enqueuing the message
in SR-2, it checks the fullness of the ring using
IXP library APl and waits if the ring is full.
After sending the message to the processor, the
thread swaps out and tries to serve the next
packet from the same flow i.

5.2.5CPU Prediction Thread

This thread waits for the signal from the
initialization thread before it starts its infinite
loop. In each turn, the thread calls an SRAM API
to read the processor-to-scheduler message from
scratchpad ring 3 (SR-3) and specifies a signal
number to wait on and then swaps out so that
other threads can work while it is waiting for the
read to complete. After reading the message, the
thread validates the message and if it's a valid
message, then it updates the estimated CPU
requirement of the specified flow using SES
estimation technique. The estimated CPU
requirements (per packet) per flow are kept in
global variables.

5.3 Packet Processor to CBCS Scheduler
Feedback Message Structure

After processing of a packet is completed, the
processor microengine sends a feedback message
to the scheduler (via SR-3) that contains two
long words of data. The packet processor to
CPU scheduler message structure also uses the
same data structure.

5.4 Packet Processor to Packet TX
Message Structure

After processing of a packet is completed, the
processor microengine sends a packet
transmission message to the Packet TX micro
engine (via SR-4) that contains just one long
word of data.

6.0 CONCLUSION

CBCS is a low complexity scheduler, which has
better fairness and performance characteristics as
compared to an implementation consisting of
separate schedulers of similar complexity. With
the rapid growth in link bandwidth, the duration

129

©2010 International Journal of Computer Applications (0975 - 8887)

of time that is available to a router for making a
scheduling decision is diminishing rapidly.
Hence it is imperative that a scheduling
algorithm can be easily implementable in real
hardware systems. So we developed a real world
implementation of the CBCS scheduler using a
network processor such as the Intel
IXP2800.This algorithm can be readily adapted
for the joint allocation of a combination of
different heterogeneous resources such as
bandwidth and battery power in mobile ad hoc,
memory and processor cycles in router.

7.0 REFERENCES

[1] N. Niebert, R. Hancock, H. Flinck, H.
Karl, C. Prehofer, “Ambient Networks
Research for Communication Networks
Beyond 3G”, IST Mobile Summit Lyon,
2004.

[2] F. Sabrina and S. Jha, "A novel
Architecture for resource management in
Active Networks using a directory service",
ICT 2003, Tahiti, French Polynesia,
February 23 -1 March, 2003, pp: 45-52.

[3] IXP2800 Framework developer manual,
as provided with the Intel XA SDK 3.5.

[4] IXA Portability Framework Reference
Manual, as provided with the Intel IXA
SDK 3.5.

[5] IXP 2800 Hardware Reference Manual,
as provided with the Intel XA SDK 3.5.

[6] P. Pappu and T. Wolf, “Scheduling
Processing Resources in Programmable
Routers,” Proc. IEEE INFOCOM °02, June
2002.

[7] A. Demers, S. Keshav, and S. Shenker,
“Design and Analysis of a Fair Queuing
Algorithm,” Proc. ACM SIGCOMM, pp. 1-
12, Sept.

1989.

[8] Website,”the Wireless World Research
Forum”, http://www.wireless-world-
research.org.

Volume 1 - No. 16

[9] WWI Ambient
http://www.ambient-networks.org.

Networks,

[10] “Intel IXP2400 Network Processor
Overview,” white paper,
http://www.intel.com/design/network/produ
cts/npfamily/ixp2400.htm, 2007.

130

