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   ABSTRACT 
 

The Ambient Network project aims at designing a future networking environment where today’s networks (cellular, wireless, 
fixed) are seamlessly integrated offering a richer and smarter networking experience to applications and users. An efficient 
resource management method to deal with different characteristics of the heterogeneous technologies is the need of the hour. IXP 
2800 network processor is the high end device designed for 10 gigabit data rates with typical usage in high speed packet 
forwarding systems and ambient networks. This project aims at using network processors for solving resource management 
issues in ambient networks. The problem of fair allocation among contending traffic flows on a link has been extensively 
reasearched. Moreover, conventional resource scheduling algorithms depend strongly upon the assumption of prior knowledge of 
network parameters and cannot handle variations or lack of information about these parameters. In this paper a novel scheduler 

called the Composite Bandwidth and CPU Scheduler (CBCS). Which jointly allocates the fair share of the link bandwidth as well 
as processing resource to all competing flows. CBCS also uses a simple and adaptive online prediction scheme for reliably 
estimating the processing time of the packet. 
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1.0 INTRODUCTION 

Recent Technology has become indispensable to 

human life. Today number of network offers 

different kind of services to unlimited number of 

end users, but they are not getting satisfactory 

services from service provider. For instance 

existing mobile and wireless link layer 
technologies like Wireless Local Area Network, 

Global System for Mobile Communication, in 

third generation network, etc, lack a common 

control plane in order to enable end-users to 

benefit fully from the offered access 

connectivity. In addition access to these  

networks is often restricted due to security and 

business consideration. Although static, pre-

established roaming agreements can extend the 

scope of these subscriptions to some other 

networks, there is no technology to automatically 
and transparently select the best and cost 

effective link for the end-user. Major factor that 

affects the services offered by these networks is 

congestion. 

The solutions for these problems are provided in 

next generation communication networks with 
coexistence of multiple technologies and user 

devices of integrated fashion. One such 

technology is Ambient Network. Ambient 

Network aims to provide solutions encountered 

in current mobile and wireless networks. As 

ambient network compose and decompose, 

topology and traffic patterns changes rapidly and 

makes it difficult to rely on long-term network 

planning and dimensioning .To overcome these 

difficulties, mechanisms are needed to 

dynamically adapt changes in traffic demand and 

to utilize the available resources fairly. In this 
project a new networking concept known as 

Ambient Control Space and its functionalities are 
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introduced and discussed about the design of 

congestion control .In this project we also 

identify and analyze the challenges of ambient 

network pose to resource management. 

The main objective and goal of this project is to 

make better use of available resources by 
adapting the routing function to the current 

traffic situations. So that we can  

 Maximize the throughput. 

 Increase Fairness in resource 

allocation. 

 To increase the packet transmission 

rate with minimum delay. 

 

 

2.0 AMBIENT NETWORK 
The Ambient Network project aims at creating 

scalable and affordable network solutions for 

mobile and wireless systems beyond 

3G.Ambient Network (AN) contains a set of one 

or more nodes and devices, which share a 

common control plane called the Ambient 

Control Space (ACS). It aims to enable the 

cooperation of heterogeneous networks 

belonging to different operator or technology 

domains to overcome the difficulties encountered 

in current generation of network. Norbert 
Niebert, Andreas Schieder (April 2004) has 

analyzed the formation of Ambient Network 

based on three-design principle, 

 Ambient Networks build upon Open 

Connectivity and Open Networking 

functions. 

 Ambient Networks are based on Self-

Composition and Self-Management. 

 Ambient Network functions can be 

added to Existing Networks. 

Architecture and Components of Ambient 

Networks 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Components of Ambient Network 

 

2.1 Ambient Control Space 
The ACS (Ambient Control Space) is the 

internal of an Ambient Network. It has the 
functions that can be accessed and it is in full 

control of the resources of the network. Ambient 

control space can be subdivided into the actual 

control functions and the control space 

framework functions, which are not explicitly 

shown but assumed to implement the loop 

surrounding the connectivity plane. Today’s 

Internet Networking Technology according to 

Norbert Niebert, Andreas Schieder (April 2004) 

lack this common plane .The control space 

framework comprises all functions necessary to 
allow the control functions to plug into control 

space, execute their control tasks and coordinate 

with other functions present in the control space 

as said by Chen .Z, M.Mohamed ali (2004). 

These ACS functions can be used as a plug and 

play feature in existing networks. 

There are three interfaces present to 

communicate with an ACS. These are: 

 

 ANI: Ambient Network Interface. If a 

network wants to join in, it has to do so 

through this interface. 
 

 ASI: Ambient Service Interface. If a 

function needs to be accessed inside the 

ACS, this Interface is used. 

 

 ARI: Ambient Resource Interface. If a 

resource inside a network needs to be 

accessed, this interface is used. 

2.2 Functional Area (FA) 
FA is a concept to group functions into topic – 

related sets for easier reference and discussion. 

In this project, network processor is used inside 

gateways i.e. inside ANI and performs functions 

such as Traffic management, Queue 

management, Packet Processing, Packet 

classification etc. Network Processor used here 

mainly concerns with congestion control 

Functional Area. Congestion control Functional 

Area consists of connectivity plane (ACY) with 

some functionality as depicted in Figure 2 .In 
this project these functions are assumed to be 

performed by network processor. Collections of 

these functionalities are called CC-FA-CY 

(congestion control Functional area connectivity) 

and CC-FA-CS (Congestion control Functional 

Area Control space) respectively. CC-FA-CY 

includes mechanisms and techniques to interact 

with legacy solution such as TCP.CC-FA-CS 
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includes all the functions that are necessary to 

interact with all other functional areas. 

 

 

 

 
 

 

 

 

 

 

 

Fig. 2: Congestion control Functional Area. 

 

2.3 Network Composition 

Network Composition as demonstrated by Jorge 

Andres Colas (2005) is a new architectural 

concept introduced in ambient Networks to 

enable control – planes inter working and sharing 

of control functions among networks. Different 

networks may cooperate with each other 

dynamically for various purposes. The main 

intention as analyzed by Jorge Andres Colas 

(2005) is to provide inter working without 

manual intervention and prior signing of 

agreements between different network operators. 
To ensure a smooth and seamless cooperation 

agreement has to be made among all networks 

involved. A new composed network may be 

created when individual AN make an agreement 

to compose. 

Generic Ambient Network signaling protocol 

suggested by Jorge Andres Colas (2005) is used 

to exchange signaling information of functional 

areas inside ACS.A composed network consists 

of all logical and physical resources and services 

each of its members contribute according to the 
composition agreement. 

 

2.4 Characteristics of Ambient Networks 
The characteristics of Ambient Networks are: 

 

 Heterogeneity: Ambient Networks are 

based on a federation of multiple 

networks of different operators and 

technologies. 
 Mobility: In dynamically composed 

network architectures, mobility of user 

group clusters would support effective 

local communication. 

 Composability: An Ambient Network 

can be dynamically composed of 

several other networks. Cooperating 

Ambient Networks could potentially 

belong to separate administrative or 

economic entities. Hence, Ambient 

Networks provide network services in a 

cooperative as well as competitive way. 

The Ambient Network Interface (ANI) 

facilitates cooperation across different 

Ambient Networks. 
 Explicit Control Space: Provisioning (at 

least a subset of) the Ambient control. 

 Space Functions: When Ambient 

Networks and their control functions are 

composed, care must be taken that each 

individual function controls the same 

resources as before: by composing two 

Ambient Networks, resources shall not 

become a common asset but rather an 

asset that can be traded. 

 

3.0 Network Processor 
Network Processor (NP) are network devices 

specifically designed to store, process and 

forward large volumes of data packets at wire 

speed with strong programmability. Processing 

of packet at wire speed has resulted in the 

creation of Integrated Circuits that are optimized 

to deal with this form of packet data, such as 

ASIC-based switches and routers. General-

purpose processor offer programming flexibility, 
but they lack packet-processing performance. 

Network Processor has specific features or 

architecture that is provided to enhance and 

optimize packet processing within these 

networks. 

 

3.1 Intel IXP2800 Network Processor 
The IXP2800 is the high-end device of a family 

of network processors developed by Intel 
Corporation. It is designed for 10 Gigabit/sec 

data rates, with typical usage in packet 

forwarding systems. According to Matthew 

Adiletta, Mark Rosenbluth, Debra Bernstein 

(Aug 2002), It can be configured with large 

amounts of dynamic and static storage for 

buffering hundreds of thousands of packets for 

up to a million Internet Transmission Control 

Protocol (TCP) connections. 

 

3.2 The XScale™ Processor 
The XScale processor is compliant with the 

ARM Version 5TE (Advanced Risc Machines), 

and runs at 700MHz.Normally, it is used as a 

system control plane processor, handling 

exception packets and doing management tasks. 

It contains independent 32KB instruction and 

data caches, and a full capability memory 

management unit. The XScale has uniform 

access to all system resources, so it can 
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efficiently communicate with the microengine 

though data structures in shared memory. 

3.3 The IXP2XXX Microengine 
Several goals guided the specification of the ME: 
  High frequency to allow for sufficient 

instructions per packet. The ME has a six-

stage pipeline and runs at 1.4 GHz. 

 Large register set. Having many registers 

minimizes the need to shuffle program 

variables back and forth between registers 

and memory. 

 Multiple threads. Given the disparity in 

processor cycle times vs. external memory 

times, a single thread of execution often 

blocks waiting for external memory 
operations to complete. Having multiple 

threads available allows for threads to 

interleave operation—there is often at least 

one thread ready to run while others are 

blocked. This makes more productive use of 

the other ME resources, which would 

otherwise be idle. There are eight hardware 

threads available in the ME. Each of the 

eight threads will always be in one of four 

states. 

 Inactive—some applications may not require 

all eight threads. Unused threads can be kept 
in an inactive state by setting the appropriate 

value in a configuration register. 

 Executing—the executing thread is the one 

in control of the ME. Its PC is used to fetch 

the instructions that are executed. A thread 

will stay in this state until it executes an 

instruction that causes it to go to sleep state 

(there is no hardware interrupt or pre-

emption; thread swapping is completely 

under software control). At most, one thread 

can be in executing state at any time. 
 Ready—In this state, a thread is ready to 

execute but is not because a different thread 

is executing. When the executing thread 

goes to sleep state, the MEs thread arbiter 

selects the next thread to go to the executing 

state from among all the threads in the ready 

state. The arbitration is round robin. 

 Sleep—In this state, the thread is waiting for 

some external event(s) to occur (typically, 

but not limited to, an IO access). In this state 

the thread does not arbitrate to enter the 

executing state. At most, one thread can be 
in executing state at a time; any number of 

threads can be in any of the other states. 

 

3.4 Registers 
Each ME contains four types of 32-bit data path 

registers: 

 256 general-purpose registers 

 512 transfer registers 

 128 next neighbor registers 

 640 32-bit words of local memory 

GPRs are used for general programming 

purposes. They are read and written exclusively 
under program control. GPRs, when used as a 

source in an instruction, supply operands to the 

execution data path. When used as a destination 

in an instruction, they are written with the result 

of the execution data path. 

Transfer registers are used for transferring data 

to and from the ME and locations external to the 

ME (for example, DRAMs, SRAMs, etc). 

Next Neighbor (NN) registers are used as an 

efficient method to pass data from one ME to the 

next, for example, when implementing a data-

processing pipeline. 
 Local Memory (LM) is addressable storage 

located in the ME. LM is read and written 

exclusively under program control.The 

distinction between LM and the registers 

described above is that the LM address is 

computed by the program at run-time, whereas 

the register addresses are determined at compile 

time and bound in the instruction.  

 

3.5 The DRAM Cluster 
The DRAM cluster provides three independent 

DRAM controllers, each of which controls 

external Rambus DRAMs (RDRAMs). The 

reason for three channels is to provide sufficient 

data buffering bandwidth for 10Gb network 

applications. DRAMs are a good choice for a 

data buffer because they offer excellent burst 

bandwidth and are much denser and cheaper per 

bit relative to SRAM. Each DRAM controller, 

running at 133MHz provides 17Gb/s of 
bandwidth, shared between reads and writes. The 

three DRAM controllers provide hardware 

interleaving of the DRAM address space (often 

referred to as striping). This is done to spread 

accesses evenly to prevent ―hot spots‖ in the 

memory. 

 

3.6 The SRAM cluster 
The SRAM cluster consists of four independent 
SRAM controllers, each of which controls 

external Quad-Data-Rate (QDR) SRAMs. The 

reason for four channels is to provide sufficient 

control information bandwidth for 10 GB 

network applications. SRAMs are a good choice 

for control information, which tends to have 

many small data structures such as queue 

descriptors and linked lists. Each SRAM 

controller, running at 200MHz, provides 
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800MB/s of read bandwidth and 800MB/s of 

write bandwidth. In addition to the normal read 

and write access, the IXP2800 SRAM controllers 

provide three additional hardware functions. 

 Atomic read-modify-write operations: 

increment, decrement, add, subtract, 
bit-set, bit-clear, and swap. 

The atomic operations are useful for 

implementing software semaphores. They can 

also be used for multiple processes that modify a 

shared variable without using conventional 

mutex to obtain ownership. This is more 

efficient, since it eliminates the mutex operation 

altogether in this case. 

 Linked-list queue operations.  

This hardware accelerates enqueue and dequeue 

to linked-list operations by eliminating the read-

to-write or read-to-read latency. For example, to 
do an enqueue, software must read the current 

list tail and then use it as an address to write the 

new link to memory. The SRAM controller 

keeps the tail address in on-chip registers and 

does the enqueue write locally; this saves the 

time that would have been spent by the 

microengine to get the tail value and then simply 

use it as the address for the write. 

 Ring operations.  

A ring is also sometimes called a circular buffer. 

It consists of a block of SRAM addresses, which 
are referenced through a head and tail pointer. 

Data is inserted at the tail of the ring and 

removed from the head .The SRAM controller 

keeps the head and tail pointers in on chip 

registers and increments them as they are used. 

The advantage is that multiple processors can 

add data to and remove data from the rings 

without having to use a mutex to obtain 

ownership.  

 

3.7 The Media-Switch-Fabric Interface 
The Media and Switch Fabric (MSF) Interface is 

used to connect an IXP to a physical layer device 

(PHY) and/or a switch fabric. The MSF consists 

of separate receive and transmit interfaces. Each 

of the receive and transmit interfaces can be 

separately configured. The receive and transmit 

ports are unidirectional and independent of each 

other. Each IXP2800 port has 16 data signals, a 

clock, a control signal, and parity signals. There 

is also a flow control port consisting of a clock, 
data, parity, and ready status bits, and it is used 

to communicate between two IXP2800 chips, or 

an IXP2800 and a switch fabric interface. The 

IXP2800 supports 10Gb/s inbound traffic and 

15Gb/s outbound or 15Gb/s inbound and 10Gb/s 

outbound.  

Incoming packets are received into the Receive 

Buffer (RBUF). Outgoing packets are held in the 

Transmit Buffer (TBUF). The RBUF and TBUF 

are both RAMs and store data in sub-blocks 

(referred to as elements), and are accessed by 

either the microengines or XScale™.The RBUF 
and TBUF each contain 8KB of data. The 

element size is programmable as 64 bytes, 128 

bytes, or 256 bytes per element. The microengine 

can read data from the RBUF to the microengine 

inbound registers using the MSF [read] 

instruction. The microengine can promote data 

from RBUF to DRAM directly using the DRAM 

[rbuf_rd] instruction. The microengine can 

promote data into the TBUF along with status 

via writes from the outbound transfer registers 

using the MSF [write] instruction. The 

microengine can control movement of data from 
DRAM directly to the TBUF using the DRAM 

[tbuf_wr] instruction. 

 

3.8 Resource Allocation 
Fair allocation of shared network resources 

among multiple users is an intuitively desirable 

property. The Link bandwidth is not the only 

resource that is shared by the traffic flows as 

they traverse the network. A routers processor is 
often also a critical resource to which all 

competing flows should have fair access. For 

each incoming packet the router has to perform 

several activities like computing checksum, 

performing a forwarding table lookup, 

processing variable length option, etc. As the 

processing requirement of different packet vary 

widely, the issue of fairness in the allocation of 

the processing resources gains significance. 

The overall fairness cannot be achieved by fair 

sharing of the link bandwidth alone or merely 
through fair allocation of processing resource 

alone. Therefore, for better QoS and overall 

fairness in resource allocations for the 

contending flows, it is vital that the processor 

and bandwidth scheduling schemes should be 

integrated. A Novel scheduler called the 

Composite Bandwidth and CPU Scheduler 

(CBCS) Algorithm as discussed by Fariza 

Sabrina, Salil S. Kanhere and Sanjay K.Jha is 

used to allocate resource fairly. 

CBCS can schedule multiple resources 

adaptively, fairly, and efficiently among all the 
competing flows. Scheduler employs a simple 

and adaptive online prediction scheme called 

modified Single Exponential Smoothing (SES) 

for determining the packet execution times. 

Packets from each flow are first processed by the 

processor and then transmitted onto the output 
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link. The joint allocation of the processing and 

bandwidth resource is accomplished by the 

composite scheduler, which selects a packet from 

the input buffers and passes it onto the CPU for 

processing. No scheduling action takes place 

after the processing; the packets processed by the 
CPU are stored in the buffer between the 

processor and the link and are transmitted in a 

first come first serve order. 

  

4.0 ARCHITECTURE 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 System Design 
The design consists of modules for packet 

reception, processing and transmission. This 

design is implemented using Intel Network 

Processor IXP2800.Purpose of using Intel 

Network Processor is that, when compare to 

Motorola and IBM Intel Network Processor has 
flexibility in programming so that it can adapt to 

changing technologies. In addition Intel Network 

Processor provides high performance. The 

pipeline consist of following modules 

 RX Block 

 Packet Classification Block 

 Queue Management Block 

 Decision Making Block 

 TX Block 

 

The Proposed system comprises of Network 
Processor IDE that provide a real time 

environment and are designed to use inside 

gateway. Here gateway is used as network 

interface that is used to exchange information 

about various networks. The checkpoint node 

functionalities are embedded within this network 

processor. Different types of real time and non 

real time data are given as input to different 

ports. The incoming packets are classified based 

in TCP port as real time and non real time data 

and are placed in separate queues. These queues 

are served based on weighted round robin 

scheduling algorithm. The selection of routes 

and packets are transmitted in such a way that 

network congestion is reduced. The efficiency of 
packet transmission is also increased 

considerably. 

 

  

4.2 Allocation of Microengine 
The checkpoint node functionalities are assigned 

to each microengine as below; For example: 

Microengine 0:0 is assigned to receive block. 

Microengine 1:0 is assigned for CBCS 
scheduler, Microengine 0:1,0:2,1:1,1:2 is 

assigned for packet processing and forwarding 

block, Microengine 1:3 is assigned for 

transmitter block. 

 

 4.3 System Function 

The sequence of traffic monitoring, packet 
processing and optimum route selection in order 

to avoid packet loss and hence to decrease the 

overall latency is given below. 

 System is configured. Script files are 

added in startup menu. 

 Data stream from external packet 

generator or packgen are assigned to 

input ports. 

 Start Simulation 

 Receive packet from MSF.Signal 

indicates occurrence of packet at MSF 
interface. 

 Only after signaling, buffers and thread 

are allocated to incoming packets. If 

payload is large additional buffers are 

allocated from buffer pool. 

 Address of header and metadata are 

stored in queue descriptor. Only 

metadata information is handed over to 

classification block. This metadata 

information is written in SRAM 

memory using command sram_write. 

 Packets are validated. Packets should 
follow RFC1812 rule. Some of the rules 

are packet header should be five bytes 

of length, Time to live field should not 

be zero, source and destination address 

should not be class D or class E address, 

Packets with zero address should be 

dropped. 

 Packets are serviced using CBCS 

algorithm. 

 Packets are then handed over to 

transmit block using dispatch loop and 

ME 0.0  ME 1.0   

 Scheduler 

Packet Processing  

 

ME 1.3 

SR-2 

SR-3 

SR-4 

Feed back CPU used and  

Flow id for a packet 
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are then transmitted Processing of next 

packet is done. If no packet is present in 

the interface its stop processing. 

 

  5.0 System Modules 

  5.1Packet Rx to CBCS Scheduler 

Message Structure  

On receiving a new packet, each thread in this 

block checks the Start of Packet (SOP) and End 

of Packet (EOP) bits of the packet, identifies the 
port of the packet, allocates a DRAM buffer for 

the packet on start of a new packet. Moves the 

data from the receive buffer to DRAM buffer, 

signals the next stage of the pipeline on EOP, 

and cleans up the state for the next round. This 

stage requires the following four operations. 

They are 1) SRAM read to allocate a new buffer; 

2) DRAM write to move the packet data into the 

DRAM buffer; 3) SRAM write to update the 

packet descriptor information; and 4) a scratch 

ring write to signal the next pipeline stage when 

the entire packet has been reassembled with the 
packet data. 

The packet Rx microengine sends enqueue 

messages to the CBCS scheduler microengine 

via SR-1 contain three long words of data. 

 

5.2 CBCS Scheduler to Packet Processor 

Message Structure 
The CBCS scheduler to the packet processor 

messages (via SR-2) contains 2 long words of 

data. The packet processor microengines cache 

(i.e., store) the first long word data in local 

memory and uses the same data to generate 

transmit message to the packet transmitter 

microengine. Also the sopBufferOffset value is 

used to access the packet metadata from the 

SRAM memory using the dispatch loop 

functions. The second long word value is used 

later as a part of Packet Processor to Scheduler 
feedback message. 

 

 5.2.1CBCS Implementation Details 

 Microengine local memory is used for keeping 

CBCS scheduler variable such as Quantum (or 

credit increment), packet counts for the flows or 

queues, credit counter per flow, estimated CPU 

requirements (per packet per flow) etc. The local 

memory is used, as it's the fastest to access. 

However, SRAM can be used for allocating the 

variables when number of flows is extremely 
high. The CBCS scheduler is implemented using 

4 threads e.g., initialization thread, enqueue 

thread, dequeue thread, and CPU prediction 

thread. After initialization is completed, the 

initialization thread sends signals to the enqueue, 

dequeue, and CPU prediction threads to begin 

their tasks as they wait on the initialization 

thread's completion signal. 

 

5.2.2 Initialization Thread 
Initialization thread sets the SRAM channel CSR 

to indicate that packet based enqueue and 

dequeue would be done, i.e., enqueue and 

dequeue of a full packet is done every time. The 

thread also initializes SRAM queue descriptors 

(and queue array) and the scheduler variables 

(e.g., it initializes the value of quantum, credit 

counter for the flows, estimated CPU 

requirements per flow etc). After initializing the 

scheduler variables, the thread terminates itself 

so that the microengine thread arbiter excludes 

this thread from its list. 
 

5.2.3 Enqueue Thread 

The enqueue thread waits for the signal from the 

initialization thread before starting its infinite 

loop. In each turn, the thread calls an SRAM API 

(e.g. scratch get ring) to read an enqueue 

message from SR-1 and specifies a signal 

number (as a parameter to the API call). The 

thread then swaps out to allow other threads to 

run as the SRAM read operation would take 

some time. After receiving the control back, the 
thread checks the presence of the signal (i.e., 

checks whether the enqueue message read 

operation is completed or not. Once the enqueue 

message is read, it checks the validity of the 

enqueue message, as there may not be any 

message in the ring. If the thread receives an 

invalid message, it does context swap and then 

goes for the next turn. As shown earlier in table 

1, the third LW of packet metadata contains the 

packet size field. So, if the enqueue message is a 

valid message, the thread reads the third LW of 

the packet metadata from the SRAM using 
another API (e.g. sram read) and extracts the 

packet size for calculating the total resource 

requirement (i.e. both the CPU and bandwidth) 

for the packet. The CPU requirement data is 

taken from the global variable (per flow), which 

is constantly updated by the CPU prediction 

thread. The calculated total resource requirement 

is used by the dequeue thread for scheduling 

purposes, and therefore it needs to be stored. The 

enqueue thread calls an SRAM API (e.g., sram 

write) to write back the resource requirement 
data to the SRAM and specifies a signal number. 

While the write operation is in progress, the 

thread calls another API to enqueue the packet 

info in the SRAM queue corresponding to the 
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flow-id. It may be mentioned that the enqueue is 

done using the packet Next pointer (calculated 

using the sopBufHandle member of the enqueue 

message). The thread increments the packet 

counts for the queue and waits for the SRAM 

write operation to be completed. The thread then 
does a context swap and goes for the next round. 

 

RR Calculations 

The total resource requirement (RR) for the 

incoming packets is calculated in nano seconds 

(ns) using the following equation. 

RR= CPU Cost of the packet (ns) + 

Transmission cost of the packet (ns) 

= CPU cost (ns) per CPU Cycle * 

Estimated CPU Cycles Requirement                                     

+ Transmission cost per byte (ns) * Packet 

size in Bytes 
 Each microengine has clock frequency of 600 

MHZ i.e., 600 millions cycles per sec. Therefore, 

CPU cost (ns) per CPU Cycle =5/3 ns. For a 100 

Mbits network interface, the transmission cost 

per byte would be = 80 ns. 

 

5.2.4 Dequeue Thread 

Dequeue thread waits for signal from 

initialization thread before starting its infinite 

loop. In each CBCS round, the algorithm serves 

all the active or backlogged flows (i.e., the flows 
having one or more packets in the queue). So for 

each flow i, the algorithm checks whether the 

Queue Count i.e., QC [i] (stored in global 

variables) is positive or not. If QC[i] is positive, 

it adds quantum to the value of the Credit 

Counter of the flow i (i.e. CC[i]), otherwise it 

resets the CC[i] to 0 and tries to serve the next 

active flow. While serving flow I within each 

CBCS round, the algorithm checks whether both 

the CC[i] and the QC[i] are positive or not. If 

either of them is 0 or negative, the algorithm 

does a context swap (so that other threads get a 
chance to run) and then tries to serve the next 

active flow. Otherwise, the algorithm calls an 

SRAM API (e.g., sram dequeue) to dequeue a 

packet info from the SRAM queue 

corresponding to flow i and it waits for the 

dequeue completion signal. After dequeue, it 

decrements the queue count for flow i and then it 

checks the validity of the dequeued buffer handle 

(i.e., the packetNext ptr as enqueued in the 

enqueue operation). If the buffer handle is 

invalid, it does a context swap and then tries to 
serve the next packet from the same flow i. For a 

valid dequeue of a packet, the code calls another 

SRAM API to read the resource requirement 

(RR, which is the CPU requirement plus 

bandwidth requirement in nano seconds) from 

the 7th LW of the packet metadata in SRAM (as 

it was stored there during enqueue operation) and 

waits for the read operation to complete. On 

completion of the SRAM read, the system 

signals the thread and the code then decrements 
the CC [i] by the value of RR. The thread then 

generates a scheduler-to-processor message and 

enqueues the message to the scratchpad ring 2 

(SR-2). However, before enqueuing the message 

in SR-2, it checks the fullness of the ring using 

IXP library API and waits if the ring is full. 

After sending the message to the processor, the 

thread swaps out and tries to serve the next 

packet from the same flow i. 

 

 5.2.5CPU Prediction Thread 

This thread waits for the signal from the 
initialization thread before it starts its infinite 

loop. In each turn, the thread calls an SRAM API 

to read the processor-to-scheduler message from 

scratchpad ring 3 (SR-3) and specifies a signal 

number to wait on and then swaps out so that 

other threads can work while it is waiting for the 

read to complete. After reading the message, the 

thread validates the message and if it's a valid 

message, then it updates the estimated CPU 

requirement of the specified flow using SES 

estimation technique. The estimated CPU 
requirements (per packet) per flow are kept in 

global variables.  

 

5.3 Packet Processor to CBCS Scheduler 

Feedback Message Structure 
After processing of a packet is completed, the 

processor microengine sends a feedback message 
to the scheduler (via SR-3) that contains two 

long words of data. The   packet processor to 

CPU scheduler message structure also uses the 

same data structure. 

 

5.4 Packet Processor to Packet TX 

Message Structure 
After processing of a packet is completed, the 

processor microengine sends a packet 

transmission message to the Packet TX micro 

engine (via SR-4) that contains just one long 

word of data. 

 

6.0 CONCLUSION 
CBCS is a low complexity scheduler, which has 
better fairness and performance characteristics as 

compared to an implementation consisting of 

separate schedulers of similar complexity. With 

the rapid growth in link bandwidth, the duration 
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of time that is available to a router for making a 

scheduling decision is diminishing rapidly. 

Hence it is imperative that a scheduling 

algorithm can be easily implementable in real 

hardware systems. So we developed a real world 

implementation of the CBCS scheduler using a 
network processor such as the Intel 

IXP2800.This algorithm can be readily adapted 

for the joint allocation of a combination of 

different heterogeneous resources such as 

bandwidth and battery power in mobile ad hoc, 

memory and processor cycles in router. 
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