
©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 16

122

RESOURCE MANAGEMENT IN AMBIENT NETWORK
USING NETWORK PROCESSOR

1 Mrs. K.Sashi Rekha, 2 Mrs. Nagalakshmi Venugopal, 3 Mr. D.Selvam

 1. Mrs.K.Sashi Rekha M.E.,Lecturer(Computer Science and Engineering),

Dr.N.G.P. Institute of Technology, Coimbatore.

2. Mrs.Nagalakshmi Venugopal, M.E (P.hd).,Lecturer (Computer Science and Engineering),

Dr.N.G.P. Institute of Technology, Coimbatore.

3. Mr.D.Selvam M.E. Lecturer (Information Technology),

Dr.N.G.P. Institute of Technology, Coimbatore.

 ABSTRACT

The Ambient Network project aims at designing a future networking environment where today’s networks (cellular, wireless,
fixed) are seamlessly integrated offering a richer and smarter networking experience to applications and users. An efficient
resource management method to deal with different characteristics of the heterogeneous technologies is the need of the hour. IXP
2800 network processor is the high end device designed for 10 gigabit data rates with typical usage in high speed packet
forwarding systems and ambient networks. This project aims at using network processors for solving resource management
issues in ambient networks. The problem of fair allocation among contending traffic flows on a link has been extensively
reasearched. Moreover, conventional resource scheduling algorithms depend strongly upon the assumption of prior knowledge of
network parameters and cannot handle variations or lack of information about these parameters. In this paper a novel scheduler

called the Composite Bandwidth and CPU Scheduler (CBCS). Which jointly allocates the fair share of the link bandwidth as well
as processing resource to all competing flows. CBCS also uses a simple and adaptive online prediction scheme for reliably
estimating the processing time of the packet.

Keywords:

Ambient Network,Network Processor,Scheduling,Distributed Applications,Packet-Switched networks

1.0 INTRODUCTION

Recent Technology has become indispensable to

human life. Today number of network offers

different kind of services to unlimited number of

end users, but they are not getting satisfactory

services from service provider. For instance

existing mobile and wireless link layer
technologies like Wireless Local Area Network,

Global System for Mobile Communication, in

third generation network, etc, lack a common

control plane in order to enable end-users to

benefit fully from the offered access

connectivity. In addition access to these

networks is often restricted due to security and

business consideration. Although static, pre-

established roaming agreements can extend the

scope of these subscriptions to some other

networks, there is no technology to automatically
and transparently select the best and cost

effective link for the end-user. Major factor that

affects the services offered by these networks is

congestion.

The solutions for these problems are provided in

next generation communication networks with
coexistence of multiple technologies and user

devices of integrated fashion. One such

technology is Ambient Network. Ambient

Network aims to provide solutions encountered

in current mobile and wireless networks. As

ambient network compose and decompose,

topology and traffic patterns changes rapidly and

makes it difficult to rely on long-term network

planning and dimensioning .To overcome these

difficulties, mechanisms are needed to

dynamically adapt changes in traffic demand and

to utilize the available resources fairly. In this
project a new networking concept known as

Ambient Control Space and its functionalities are

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 16

123

introduced and discussed about the design of

congestion control .In this project we also

identify and analyze the challenges of ambient

network pose to resource management.

The main objective and goal of this project is to

make better use of available resources by
adapting the routing function to the current

traffic situations. So that we can

 Maximize the throughput.

 Increase Fairness in resource

allocation.

 To increase the packet transmission

rate with minimum delay.

2.0 AMBIENT NETWORK
The Ambient Network project aims at creating

scalable and affordable network solutions for

mobile and wireless systems beyond

3G.Ambient Network (AN) contains a set of one

or more nodes and devices, which share a

common control plane called the Ambient

Control Space (ACS). It aims to enable the

cooperation of heterogeneous networks

belonging to different operator or technology

domains to overcome the difficulties encountered

in current generation of network. Norbert
Niebert, Andreas Schieder (April 2004) has

analyzed the formation of Ambient Network

based on three-design principle,

 Ambient Networks build upon Open

Connectivity and Open Networking

functions.

 Ambient Networks are based on Self-

Composition and Self-Management.

 Ambient Network functions can be

added to Existing Networks.

Architecture and Components of Ambient

Networks

Fig. 1: Components of Ambient Network

2.1 Ambient Control Space
The ACS (Ambient Control Space) is the

internal of an Ambient Network. It has the
functions that can be accessed and it is in full

control of the resources of the network. Ambient

control space can be subdivided into the actual

control functions and the control space

framework functions, which are not explicitly

shown but assumed to implement the loop

surrounding the connectivity plane. Today’s

Internet Networking Technology according to

Norbert Niebert, Andreas Schieder (April 2004)

lack this common plane .The control space

framework comprises all functions necessary to
allow the control functions to plug into control

space, execute their control tasks and coordinate

with other functions present in the control space

as said by Chen .Z, M.Mohamed ali (2004).

These ACS functions can be used as a plug and

play feature in existing networks.

There are three interfaces present to

communicate with an ACS. These are:

 ANI: Ambient Network Interface. If a

network wants to join in, it has to do so

through this interface.

 ASI: Ambient Service Interface. If a

function needs to be accessed inside the

ACS, this Interface is used.

 ARI: Ambient Resource Interface. If a

resource inside a network needs to be

accessed, this interface is used.

2.2 Functional Area (FA)
FA is a concept to group functions into topic –

related sets for easier reference and discussion.

In this project, network processor is used inside

gateways i.e. inside ANI and performs functions

such as Traffic management, Queue

management, Packet Processing, Packet

classification etc. Network Processor used here

mainly concerns with congestion control

Functional Area. Congestion control Functional

Area consists of connectivity plane (ACY) with

some functionality as depicted in Figure 2 .In
this project these functions are assumed to be

performed by network processor. Collections of

these functionalities are called CC-FA-CY

(congestion control Functional area connectivity)

and CC-FA-CS (Congestion control Functional

Area Control space) respectively. CC-FA-CY

includes mechanisms and techniques to interact

with legacy solution such as TCP.CC-FA-CS

Ambient
Connectivity

Context
Information

Routing

Group
Information

Composition
Agreement

Traffic
engineering

Naming

Overlay

 Support
 Layer

Multi-Radio

Resource

Management

ASI

ARI

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 16

124

includes all the functions that are necessary to

interact with all other functional areas.

Fig. 2: Congestion control Functional Area.

2.3 Network Composition

Network Composition as demonstrated by Jorge

Andres Colas (2005) is a new architectural

concept introduced in ambient Networks to

enable control – planes inter working and sharing

of control functions among networks. Different

networks may cooperate with each other

dynamically for various purposes. The main

intention as analyzed by Jorge Andres Colas

(2005) is to provide inter working without

manual intervention and prior signing of

agreements between different network operators.
To ensure a smooth and seamless cooperation

agreement has to be made among all networks

involved. A new composed network may be

created when individual AN make an agreement

to compose.

Generic Ambient Network signaling protocol

suggested by Jorge Andres Colas (2005) is used

to exchange signaling information of functional

areas inside ACS.A composed network consists

of all logical and physical resources and services

each of its members contribute according to the
composition agreement.

2.4 Characteristics of Ambient Networks
The characteristics of Ambient Networks are:

 Heterogeneity: Ambient Networks are

based on a federation of multiple

networks of different operators and

technologies.
 Mobility: In dynamically composed

network architectures, mobility of user

group clusters would support effective

local communication.

 Composability: An Ambient Network

can be dynamically composed of

several other networks. Cooperating

Ambient Networks could potentially

belong to separate administrative or

economic entities. Hence, Ambient

Networks provide network services in a

cooperative as well as competitive way.

The Ambient Network Interface (ANI)

facilitates cooperation across different

Ambient Networks.
 Explicit Control Space: Provisioning (at

least a subset of) the Ambient control.

 Space Functions: When Ambient

Networks and their control functions are

composed, care must be taken that each

individual function controls the same

resources as before: by composing two

Ambient Networks, resources shall not

become a common asset but rather an

asset that can be traded.

3.0 Network Processor
Network Processor (NP) are network devices

specifically designed to store, process and

forward large volumes of data packets at wire

speed with strong programmability. Processing

of packet at wire speed has resulted in the

creation of Integrated Circuits that are optimized

to deal with this form of packet data, such as

ASIC-based switches and routers. General-

purpose processor offer programming flexibility,
but they lack packet-processing performance.

Network Processor has specific features or

architecture that is provided to enhance and

optimize packet processing within these

networks.

3.1 Intel IXP2800 Network Processor
The IXP2800 is the high-end device of a family

of network processors developed by Intel
Corporation. It is designed for 10 Gigabit/sec

data rates, with typical usage in packet

forwarding systems. According to Matthew

Adiletta, Mark Rosenbluth, Debra Bernstein

(Aug 2002), It can be configured with large

amounts of dynamic and static storage for

buffering hundreds of thousands of packets for

up to a million Internet Transmission Control

Protocol (TCP) connections.

3.2 The XScale™ Processor
The XScale processor is compliant with the

ARM Version 5TE (Advanced Risc Machines),

and runs at 700MHz.Normally, it is used as a

system control plane processor, handling

exception packets and doing management tasks.

It contains independent 32KB instruction and

data caches, and a full capability memory

management unit. The XScale has uniform

access to all system resources, so it can

ACS

CC-FA-CY

 ACY

CC-FA-CC

Networks

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 16

125

efficiently communicate with the microengine

though data structures in shared memory.

3.3 The IXP2XXX Microengine
Several goals guided the specification of the ME:
 High frequency to allow for sufficient

instructions per packet. The ME has a six-

stage pipeline and runs at 1.4 GHz.

 Large register set. Having many registers

minimizes the need to shuffle program

variables back and forth between registers

and memory.

 Multiple threads. Given the disparity in

processor cycle times vs. external memory

times, a single thread of execution often

blocks waiting for external memory
operations to complete. Having multiple

threads available allows for threads to

interleave operation—there is often at least

one thread ready to run while others are

blocked. This makes more productive use of

the other ME resources, which would

otherwise be idle. There are eight hardware

threads available in the ME. Each of the

eight threads will always be in one of four

states.

 Inactive—some applications may not require

all eight threads. Unused threads can be kept
in an inactive state by setting the appropriate

value in a configuration register.

 Executing—the executing thread is the one

in control of the ME. Its PC is used to fetch

the instructions that are executed. A thread

will stay in this state until it executes an

instruction that causes it to go to sleep state

(there is no hardware interrupt or pre-

emption; thread swapping is completely

under software control). At most, one thread

can be in executing state at any time.
 Ready—In this state, a thread is ready to

execute but is not because a different thread

is executing. When the executing thread

goes to sleep state, the MEs thread arbiter

selects the next thread to go to the executing

state from among all the threads in the ready

state. The arbitration is round robin.

 Sleep—In this state, the thread is waiting for

some external event(s) to occur (typically,

but not limited to, an IO access). In this state

the thread does not arbitrate to enter the

executing state. At most, one thread can be
in executing state at a time; any number of

threads can be in any of the other states.

3.4 Registers
Each ME contains four types of 32-bit data path

registers:

 256 general-purpose registers

 512 transfer registers

 128 next neighbor registers

 640 32-bit words of local memory

GPRs are used for general programming

purposes. They are read and written exclusively
under program control. GPRs, when used as a

source in an instruction, supply operands to the

execution data path. When used as a destination

in an instruction, they are written with the result

of the execution data path.

Transfer registers are used for transferring data

to and from the ME and locations external to the

ME (for example, DRAMs, SRAMs, etc).

Next Neighbor (NN) registers are used as an

efficient method to pass data from one ME to the

next, for example, when implementing a data-

processing pipeline.
 Local Memory (LM) is addressable storage

located in the ME. LM is read and written

exclusively under program control.The

distinction between LM and the registers

described above is that the LM address is

computed by the program at run-time, whereas

the register addresses are determined at compile

time and bound in the instruction.

3.5 The DRAM Cluster
The DRAM cluster provides three independent

DRAM controllers, each of which controls

external Rambus DRAMs (RDRAMs). The

reason for three channels is to provide sufficient

data buffering bandwidth for 10Gb network

applications. DRAMs are a good choice for a

data buffer because they offer excellent burst

bandwidth and are much denser and cheaper per

bit relative to SRAM. Each DRAM controller,

running at 133MHz provides 17Gb/s of
bandwidth, shared between reads and writes. The

three DRAM controllers provide hardware

interleaving of the DRAM address space (often

referred to as striping). This is done to spread

accesses evenly to prevent ―hot spots‖ in the

memory.

3.6 The SRAM cluster
The SRAM cluster consists of four independent
SRAM controllers, each of which controls

external Quad-Data-Rate (QDR) SRAMs. The

reason for four channels is to provide sufficient

control information bandwidth for 10 GB

network applications. SRAMs are a good choice

for control information, which tends to have

many small data structures such as queue

descriptors and linked lists. Each SRAM

controller, running at 200MHz, provides

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 16

126

800MB/s of read bandwidth and 800MB/s of

write bandwidth. In addition to the normal read

and write access, the IXP2800 SRAM controllers

provide three additional hardware functions.

 Atomic read-modify-write operations:

increment, decrement, add, subtract,
bit-set, bit-clear, and swap.

The atomic operations are useful for

implementing software semaphores. They can

also be used for multiple processes that modify a

shared variable without using conventional

mutex to obtain ownership. This is more

efficient, since it eliminates the mutex operation

altogether in this case.

 Linked-list queue operations.

This hardware accelerates enqueue and dequeue

to linked-list operations by eliminating the read-

to-write or read-to-read latency. For example, to
do an enqueue, software must read the current

list tail and then use it as an address to write the

new link to memory. The SRAM controller

keeps the tail address in on-chip registers and

does the enqueue write locally; this saves the

time that would have been spent by the

microengine to get the tail value and then simply

use it as the address for the write.

 Ring operations.

A ring is also sometimes called a circular buffer.

It consists of a block of SRAM addresses, which
are referenced through a head and tail pointer.

Data is inserted at the tail of the ring and

removed from the head .The SRAM controller

keeps the head and tail pointers in on chip

registers and increments them as they are used.

The advantage is that multiple processors can

add data to and remove data from the rings

without having to use a mutex to obtain

ownership.

3.7 The Media-Switch-Fabric Interface
The Media and Switch Fabric (MSF) Interface is

used to connect an IXP to a physical layer device

(PHY) and/or a switch fabric. The MSF consists

of separate receive and transmit interfaces. Each

of the receive and transmit interfaces can be

separately configured. The receive and transmit

ports are unidirectional and independent of each

other. Each IXP2800 port has 16 data signals, a

clock, a control signal, and parity signals. There

is also a flow control port consisting of a clock,
data, parity, and ready status bits, and it is used

to communicate between two IXP2800 chips, or

an IXP2800 and a switch fabric interface. The

IXP2800 supports 10Gb/s inbound traffic and

15Gb/s outbound or 15Gb/s inbound and 10Gb/s

outbound.

Incoming packets are received into the Receive

Buffer (RBUF). Outgoing packets are held in the

Transmit Buffer (TBUF). The RBUF and TBUF

are both RAMs and store data in sub-blocks

(referred to as elements), and are accessed by

either the microengines or XScale™.The RBUF
and TBUF each contain 8KB of data. The

element size is programmable as 64 bytes, 128

bytes, or 256 bytes per element. The microengine

can read data from the RBUF to the microengine

inbound registers using the MSF [read]

instruction. The microengine can promote data

from RBUF to DRAM directly using the DRAM

[rbuf_rd] instruction. The microengine can

promote data into the TBUF along with status

via writes from the outbound transfer registers

using the MSF [write] instruction. The

microengine can control movement of data from
DRAM directly to the TBUF using the DRAM

[tbuf_wr] instruction.

3.8 Resource Allocation
Fair allocation of shared network resources

among multiple users is an intuitively desirable

property. The Link bandwidth is not the only

resource that is shared by the traffic flows as

they traverse the network. A routers processor is
often also a critical resource to which all

competing flows should have fair access. For

each incoming packet the router has to perform

several activities like computing checksum,

performing a forwarding table lookup,

processing variable length option, etc. As the

processing requirement of different packet vary

widely, the issue of fairness in the allocation of

the processing resources gains significance.

The overall fairness cannot be achieved by fair

sharing of the link bandwidth alone or merely
through fair allocation of processing resource

alone. Therefore, for better QoS and overall

fairness in resource allocations for the

contending flows, it is vital that the processor

and bandwidth scheduling schemes should be

integrated. A Novel scheduler called the

Composite Bandwidth and CPU Scheduler

(CBCS) Algorithm as discussed by Fariza

Sabrina, Salil S. Kanhere and Sanjay K.Jha is

used to allocate resource fairly.

CBCS can schedule multiple resources

adaptively, fairly, and efficiently among all the
competing flows. Scheduler employs a simple

and adaptive online prediction scheme called

modified Single Exponential Smoothing (SES)

for determining the packet execution times.

Packets from each flow are first processed by the

processor and then transmitted onto the output

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 16

127

link. The joint allocation of the processing and

bandwidth resource is accomplished by the

composite scheduler, which selects a packet from

the input buffers and passes it onto the CPU for

processing. No scheduling action takes place

after the processing; the packets processed by the
CPU are stored in the buffer between the

processor and the link and are transmitted in a

first come first serve order.

4.0 ARCHITECTURE

4.1 System Design
The design consists of modules for packet

reception, processing and transmission. This

design is implemented using Intel Network

Processor IXP2800.Purpose of using Intel

Network Processor is that, when compare to

Motorola and IBM Intel Network Processor has
flexibility in programming so that it can adapt to

changing technologies. In addition Intel Network

Processor provides high performance. The

pipeline consist of following modules

 RX Block

 Packet Classification Block

 Queue Management Block

 Decision Making Block

 TX Block

The Proposed system comprises of Network
Processor IDE that provide a real time

environment and are designed to use inside

gateway. Here gateway is used as network

interface that is used to exchange information

about various networks. The checkpoint node

functionalities are embedded within this network

processor. Different types of real time and non

real time data are given as input to different

ports. The incoming packets are classified based

in TCP port as real time and non real time data

and are placed in separate queues. These queues

are served based on weighted round robin

scheduling algorithm. The selection of routes

and packets are transmitted in such a way that

network congestion is reduced. The efficiency of
packet transmission is also increased

considerably.

4.2 Allocation of Microengine
The checkpoint node functionalities are assigned

to each microengine as below; For example:

Microengine 0:0 is assigned to receive block.

Microengine 1:0 is assigned for CBCS
scheduler, Microengine 0:1,0:2,1:1,1:2 is

assigned for packet processing and forwarding

block, Microengine 1:3 is assigned for

transmitter block.

 4.3 System Function

The sequence of traffic monitoring, packet
processing and optimum route selection in order

to avoid packet loss and hence to decrease the

overall latency is given below.

 System is configured. Script files are

added in startup menu.

 Data stream from external packet

generator or packgen are assigned to

input ports.

 Start Simulation

 Receive packet from MSF.Signal

indicates occurrence of packet at MSF
interface.

 Only after signaling, buffers and thread

are allocated to incoming packets. If

payload is large additional buffers are

allocated from buffer pool.

 Address of header and metadata are

stored in queue descriptor. Only

metadata information is handed over to

classification block. This metadata

information is written in SRAM

memory using command sram_write.

 Packets are validated. Packets should
follow RFC1812 rule. Some of the rules

are packet header should be five bytes

of length, Time to live field should not

be zero, source and destination address

should not be class D or class E address,

Packets with zero address should be

dropped.

 Packets are serviced using CBCS

algorithm.

 Packets are then handed over to

transmit block using dispatch loop and

ME 0.0 ME 1.0

 Scheduler

Packet Processing

ME 1.3

SR-2

SR-3

SR-4

Feed back CPU used and

Flow id for a packet

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 16

128

are then transmitted Processing of next

packet is done. If no packet is present in

the interface its stop processing.

 5.0 System Modules

 5.1Packet Rx to CBCS Scheduler

Message Structure

On receiving a new packet, each thread in this

block checks the Start of Packet (SOP) and End

of Packet (EOP) bits of the packet, identifies the
port of the packet, allocates a DRAM buffer for

the packet on start of a new packet. Moves the

data from the receive buffer to DRAM buffer,

signals the next stage of the pipeline on EOP,

and cleans up the state for the next round. This

stage requires the following four operations.

They are 1) SRAM read to allocate a new buffer;

2) DRAM write to move the packet data into the

DRAM buffer; 3) SRAM write to update the

packet descriptor information; and 4) a scratch

ring write to signal the next pipeline stage when

the entire packet has been reassembled with the
packet data.

The packet Rx microengine sends enqueue

messages to the CBCS scheduler microengine

via SR-1 contain three long words of data.

5.2 CBCS Scheduler to Packet Processor

Message Structure
The CBCS scheduler to the packet processor

messages (via SR-2) contains 2 long words of

data. The packet processor microengines cache

(i.e., store) the first long word data in local

memory and uses the same data to generate

transmit message to the packet transmitter

microengine. Also the sopBufferOffset value is

used to access the packet metadata from the

SRAM memory using the dispatch loop

functions. The second long word value is used

later as a part of Packet Processor to Scheduler
feedback message.

 5.2.1CBCS Implementation Details

 Microengine local memory is used for keeping

CBCS scheduler variable such as Quantum (or

credit increment), packet counts for the flows or

queues, credit counter per flow, estimated CPU

requirements (per packet per flow) etc. The local

memory is used, as it's the fastest to access.

However, SRAM can be used for allocating the

variables when number of flows is extremely
high. The CBCS scheduler is implemented using

4 threads e.g., initialization thread, enqueue

thread, dequeue thread, and CPU prediction

thread. After initialization is completed, the

initialization thread sends signals to the enqueue,

dequeue, and CPU prediction threads to begin

their tasks as they wait on the initialization

thread's completion signal.

5.2.2 Initialization Thread
Initialization thread sets the SRAM channel CSR

to indicate that packet based enqueue and

dequeue would be done, i.e., enqueue and

dequeue of a full packet is done every time. The

thread also initializes SRAM queue descriptors

(and queue array) and the scheduler variables

(e.g., it initializes the value of quantum, credit

counter for the flows, estimated CPU

requirements per flow etc). After initializing the

scheduler variables, the thread terminates itself

so that the microengine thread arbiter excludes

this thread from its list.

5.2.3 Enqueue Thread

The enqueue thread waits for the signal from the

initialization thread before starting its infinite

loop. In each turn, the thread calls an SRAM API

(e.g. scratch get ring) to read an enqueue

message from SR-1 and specifies a signal

number (as a parameter to the API call). The

thread then swaps out to allow other threads to

run as the SRAM read operation would take

some time. After receiving the control back, the
thread checks the presence of the signal (i.e.,

checks whether the enqueue message read

operation is completed or not. Once the enqueue

message is read, it checks the validity of the

enqueue message, as there may not be any

message in the ring. If the thread receives an

invalid message, it does context swap and then

goes for the next turn. As shown earlier in table

1, the third LW of packet metadata contains the

packet size field. So, if the enqueue message is a

valid message, the thread reads the third LW of

the packet metadata from the SRAM using
another API (e.g. sram read) and extracts the

packet size for calculating the total resource

requirement (i.e. both the CPU and bandwidth)

for the packet. The CPU requirement data is

taken from the global variable (per flow), which

is constantly updated by the CPU prediction

thread. The calculated total resource requirement

is used by the dequeue thread for scheduling

purposes, and therefore it needs to be stored. The

enqueue thread calls an SRAM API (e.g., sram

write) to write back the resource requirement
data to the SRAM and specifies a signal number.

While the write operation is in progress, the

thread calls another API to enqueue the packet

info in the SRAM queue corresponding to the

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 16

129

flow-id. It may be mentioned that the enqueue is

done using the packet Next pointer (calculated

using the sopBufHandle member of the enqueue

message). The thread increments the packet

counts for the queue and waits for the SRAM

write operation to be completed. The thread then
does a context swap and goes for the next round.

RR Calculations

The total resource requirement (RR) for the

incoming packets is calculated in nano seconds

(ns) using the following equation.

RR= CPU Cost of the packet (ns) +

Transmission cost of the packet (ns)

= CPU cost (ns) per CPU Cycle *

Estimated CPU Cycles Requirement

+ Transmission cost per byte (ns) * Packet

size in Bytes
 Each microengine has clock frequency of 600

MHZ i.e., 600 millions cycles per sec. Therefore,

CPU cost (ns) per CPU Cycle =5/3 ns. For a 100

Mbits network interface, the transmission cost

per byte would be = 80 ns.

5.2.4 Dequeue Thread

Dequeue thread waits for signal from

initialization thread before starting its infinite

loop. In each CBCS round, the algorithm serves

all the active or backlogged flows (i.e., the flows
having one or more packets in the queue). So for

each flow i, the algorithm checks whether the

Queue Count i.e., QC [i] (stored in global

variables) is positive or not. If QC[i] is positive,

it adds quantum to the value of the Credit

Counter of the flow i (i.e. CC[i]), otherwise it

resets the CC[i] to 0 and tries to serve the next

active flow. While serving flow I within each

CBCS round, the algorithm checks whether both

the CC[i] and the QC[i] are positive or not. If

either of them is 0 or negative, the algorithm

does a context swap (so that other threads get a
chance to run) and then tries to serve the next

active flow. Otherwise, the algorithm calls an

SRAM API (e.g., sram dequeue) to dequeue a

packet info from the SRAM queue

corresponding to flow i and it waits for the

dequeue completion signal. After dequeue, it

decrements the queue count for flow i and then it

checks the validity of the dequeued buffer handle

(i.e., the packetNext ptr as enqueued in the

enqueue operation). If the buffer handle is

invalid, it does a context swap and then tries to
serve the next packet from the same flow i. For a

valid dequeue of a packet, the code calls another

SRAM API to read the resource requirement

(RR, which is the CPU requirement plus

bandwidth requirement in nano seconds) from

the 7th LW of the packet metadata in SRAM (as

it was stored there during enqueue operation) and

waits for the read operation to complete. On

completion of the SRAM read, the system

signals the thread and the code then decrements
the CC [i] by the value of RR. The thread then

generates a scheduler-to-processor message and

enqueues the message to the scratchpad ring 2

(SR-2). However, before enqueuing the message

in SR-2, it checks the fullness of the ring using

IXP library API and waits if the ring is full.

After sending the message to the processor, the

thread swaps out and tries to serve the next

packet from the same flow i.

 5.2.5CPU Prediction Thread

This thread waits for the signal from the
initialization thread before it starts its infinite

loop. In each turn, the thread calls an SRAM API

to read the processor-to-scheduler message from

scratchpad ring 3 (SR-3) and specifies a signal

number to wait on and then swaps out so that

other threads can work while it is waiting for the

read to complete. After reading the message, the

thread validates the message and if it's a valid

message, then it updates the estimated CPU

requirement of the specified flow using SES

estimation technique. The estimated CPU
requirements (per packet) per flow are kept in

global variables.

5.3 Packet Processor to CBCS Scheduler

Feedback Message Structure
After processing of a packet is completed, the

processor microengine sends a feedback message
to the scheduler (via SR-3) that contains two

long words of data. The packet processor to

CPU scheduler message structure also uses the

same data structure.

5.4 Packet Processor to Packet TX

Message Structure
After processing of a packet is completed, the

processor microengine sends a packet

transmission message to the Packet TX micro

engine (via SR-4) that contains just one long

word of data.

6.0 CONCLUSION
CBCS is a low complexity scheduler, which has
better fairness and performance characteristics as

compared to an implementation consisting of

separate schedulers of similar complexity. With

the rapid growth in link bandwidth, the duration

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 16

130

of time that is available to a router for making a

scheduling decision is diminishing rapidly.

Hence it is imperative that a scheduling

algorithm can be easily implementable in real

hardware systems. So we developed a real world

implementation of the CBCS scheduler using a
network processor such as the Intel

IXP2800.This algorithm can be readily adapted

for the joint allocation of a combination of

different heterogeneous resources such as

bandwidth and battery power in mobile ad hoc,

memory and processor cycles in router.

7.0 REFERENCES

[1] N. Niebert, R. Hancock, H. Flinck, H.
Karl, C. Prehofer, ―Ambient Networks

Research for Communication Networks

Beyond 3G‖, IST Mobile Summit Lyon,

2004.

[2] F. Sabrina and S. Jha, "A novel

Architecture for resource management in
Active Networks using a directory service",

ICT 2003, Tahiti, French Polynesia,

February 23 -1 March, 2003, pp: 45-52.

[3] IXP2800 Framework developer manual,

as provided with the Intel IXA SDK 3.5.

[4] IXA Portability Framework Reference

Manual, as provided with the Intel IXA

SDK 3.5.

[5] IXP 2800 Hardware Reference Manual,

as provided with the Intel IXA SDK 3.5.

[6] P. Pappu and T. Wolf, ―Scheduling

Processing Resources in Programmable
Routers,‖ Proc. IEEE INFOCOM ’02, June

2002.

[7] A. Demers, S. Keshav, and S. Shenker,

―Design and Analysis of a Fair Queuing

Algorithm,‖ Proc. ACM SIGCOMM, pp. 1-

12, Sept.
1989.

[8] Website,‖the Wireless World Research
Forum‖,http://www.wireless-world-

research.org.

[9] WWI Ambient Networks,
http://www.ambient-networks.org.

[10] ―Intel IXP2400 Network Processor

Overview,‖ white paper,
http://www.intel.com/design/network/produ

cts/npfamily/ixp2400.htm, 2007.

