
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

92

Designing Compilation Server
Mrs. Mrudula S. Nimbarte

Lecturer
Bapurao Deshmukh College of Engineering,

Sevagram, Wardha, 442102

Prof. A. P. Bodkhe

Professor and Head
Information Technology Department

Prof. Ram Meghe Institute of Technology and
Research,Badnera

ABSTRACT

In language systems that support separate compilation, the

header files are internalized over and over again when the source

files that depend on them are compiled. Making a compiler a

long-lived server eliminates such redundant processing of header

files, thus reducing the compilation time. Modern JVM

implementations interleave execution with compilation of ―hot‖

methods to achieve reasonable performance. Since compilation

overhead impacts the execution time of the application and

induces run-time pauses, it is better to offload compilation onto a

compilation server. Compilation server is the server which

compiles and optimizes Java byte codes on behalf of its clients. It

provides the benefit of lower execution and pause times due to

reducing the overhead of optimization. Compilation server is able

to handle more than 50 concurrent clients while still allowing

them to outperform best performing adaptive configuration.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Processors - Compilers

General Terms

Design, Languages, Theory.

Keywords

Compilers, Compilation Server, JVM, execution time, pause

time

1. INTRODUCTION

Modern programming systems based on compilers support the

notion of separate compilation. A program in such systems

consists of source files, which are separately compiled and linked

to form an executable, and main files, which supply commonly

used declarations. Each time a source file is compiled, a new

compiler process is created. During compilation, the process

internalizes declarations in those main files on which the source

file depends, building corresponding data structures, such as

symbols and parse trees, within the process. Different language

systems internalize declarations in a main file in different ways.

For instance, in a C-based language system, the internalization

usually consists of two steps: first, the preprocessor reads the

original texts of a source file and of main files specified in it by

include directives, and writes out a preprocessed source file;

then, the compiler parses the resultant file. In a Modula-2

language system, on the other hand, the internalization involves

only a compiler. Some Modula-2 compilers, such as the one

described by [8] internalize declarations of a main file by

compiling the original text, whereas others, such as the one

described by [10] do so by reading a precompiled version of the

main file, because precompiled main files can be more efficiently

internalized.

Unfortunately, internal data structures built in one compiler

process are never shared by another compiler process in most

systems. As a result, a group of compiler processes repeatedly

internalizes declarations in main files. Let us consider two

typical situations that occur during the development of a

program—massive compilation and repetitive compilation. A

massive compilation, in which many source files are compiled in

series, is caused when an attempt is made to build an executable

after making modifications that influence many of the source

files; it sometimes occurs even as a result of a single

modification to a main file. Since each main file is ordinarily

used in more than one source file, redundant internalization

occurs [14].

2. MOTIVATION

2.1 Execution Model of Java Virtual

Machines
Running Java programs normally consists of two steps:

converting Java programs into bytecode instructions (i.e.,

compiling Java source to .class files), and executing the resulting

class files [9]. Because the compiled class files are network- and

platform-neutral, one can easily ship them across a network to

any number of diverse clients without having to recompile them.

JVMs then execute these class files, and to achieve reasonable

performance, state-of-theart JVMs, such as HotSpot [16] and

Jikes RVM [2], also perform dynamic native code generation and

optimization of selected methods. Instead of using an interpreter,

Jikes RVM [1] includes a baseline (non-optimizing) and an

optimizing compiler. The baseline compiler is designed to be

fast, and easy to implement correctly, while the optimizing

compiler is designed to produce more efficient machine code by

performing both traditional compiler optimizations (such as

common subexpression elimination) and modern optimizations

designed for object-oriented programs (such as pre-existence-

based inlining [6]. In addition to providing flags to control

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

93

individual optimizations, Jikes RVM provides three optimization

levels: O0, O1, and O2. The lower levels (O0 and O1) perform

optimizations that are fast (usually linear time) and offer high

payoff. For example, O0 performs inlining, which is considered

to be one of the most important optimizations for object-oriented

programs. O2 contains more expensive optimizations such as

ones based on static single assignment (SSA) form [4].

2.2 Compilation Pause Times

In addition to affecting overall running time of applications,

dynamic compilation also affects their responsiveness because it

induces pauses in program execution. The use of pause times as

a performance metric is popular when evaluating garbage

collection algorithms [3], and it should be equally important in

evaluating dynamic compilation systems. For example, H¨olzle

and Ungar [11] uses the concept of absolute pause times to

evaluate the responsiveness of the SELF programming system.

2.3 Memory Usage

Performing code optimizations consumes memory and thus may

degrade memory system performance. Since Java programs will

be optimized at run time, there are two memory costs for

optimizations: (i) the data space cost, i.e., the space required by

the optimizer to run; and (ii) the instruction space cost, i.e., the

footprint of the optimizer. (The final size of optimized code may

be larger or smaller than unoptimized code, but this size effect is

much smaller than the other two)[12].

3. REASON FOR SELECTION
A common method for installing a compiler is to have one copy

locally held on each client workstation. The compiler and

associated utilities and library files could be maintained by

system. In common installation methods system administrator

need to install compiler on every server and also if any updates

are there in library function provided by the specified language

or the compiler. This installation can be difficult task in case of

multiple clients. As client performance is always slower that the

server in the network we can then also implement server client

technology for compilation purpose.

So the main reason and the goal for selection of the project is to

centralization of the compiler that is single copy on the server.

This system will let the client use compilation power and the

speed of server directly form client machine. It also let the

compiler developer and the system administrator manage

compiler code and the libraries provided by the language. Now

administrator doesn‘t need to install compiler software on each

client.

Fig.1. Basic block diagram

4. PROPOSED PLAN OF ACTION

 Design and implementation of compilation server:

The primary design goal of Compilation Server is to minimize

client execution time. Compilation Server clients may include

desktop PCs, laptops, and PDAs, and thus are likely to be limited

in one form or another compared to CS, which would be

equipped with plenty of memory, fast disk drives, and fast

network connection(s). Therefore, it would be beneficial to allow

the server to various required tasks.

 Steps to develop compilation server:

a) Develop a small language

b) Design compiler for that language

c) Create editor for same language

d) Then install compiler on server as shown in fig.

2

Fig.2. Preprocessing for Compilation Server

 Architecture of compilation server is shown in fig.3

a) Connect editor to client side

b) Connect editor to server also

c) Client edit the code and send request to server for

compilation

d) Server compiles the file send back to client

e) Client can execute the file and show the output

Develop

small

language

Compil

er for

Langua

ge

Editor for

language
Install

compiler on

server

Client
Server

Compiler
Module

Library

L i n
k i n
g

 Request

 Response

Code

Editor

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

94

Fig 3. Architecture of Compilation Server

Fig 4. Behavior of Compilation Server

As shown in fig.4 client reads the file and parses all statements

and words. Then it creates the word table. After that syntax will

be checked. Then it comes the part of server. Server does the

important part of compilation. It performs normalization and

converts the file into executable one so that client can execute it.

5. ADVANTAGES
Compilation server provides the following benefits :

a) Lower execution time and pause time due to reducing

the overhead of optimization

b) Lower memory consumption of the client by

eliminating allocations due to optimizing compilation

and footprint of the optimizing compiler.

c) It can manage concurrent clients.

d) Centralization of library function

6. RESEARCH METHODOLOGY

 Development Tool

VB.Net is object oriented language, and its major features are (1)

class interfaces without private members, (2) run-time type

descriptors, (3) garbage collection and (4) on-demand

internalization of class interfaces. When we collect statistics on

the main files, we will focus on those containing class interfaces;

we do not count system main files. The compilation server is a

long-lived compiler process that accepts and handles successive

compilation requests from a client. The most important feature is

that it can retain internal data structures generated while serving

a request and use them to deal with subsequent requests; it

requires main files to be internalized only once at most. We can

thus expect it to reduce the compilation time in both massive and

repetitive compilations. This project describes details with

creating and using a compilation server, in which object

orientation is used as both the source language and the

implementation language.

 Operating System

Microsoft Windows 2000 or any grater versions

7. RELATED WORK

The idea of a compilation service means reducing the energy

consumption of mobile devices using power models in [15]. This

work is an extension of that prior work, but instead of using

power models to investigate energy consumption, it presents

design and implementation of compilation server and clients.

7.1 Server-based Compilation

There is related work in the area of server-based compilation for

Java as well as for static programming languages such as C and

C++.

 Delsart et al. [5] describe a framework called JCOD designed to

perform native compilation of Java classes similar to ours but

with completely different design goals. Their design is tailored

for embedded devices with very limited memory, and thus

Connect

editor to

server

Client

side

progra

m

Connect editor with server

type code

Client edits & send

request to server

Compilation on server

& output on Client

Start

Open File In

Read Mode

Parse All

Statements

EOF

Parse All Word

EOW

Executable Code

Create Word

Table

Syntax Check

Normalization

Error

Stop

No

Yes

Yes

Yes

No

No

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

95

focuses on improving client performance with minimal increase

in code size and memory requirements. In fact, their compile-

server performs only a few optimizations that reduce code size:

they perform no method inlining or loop unrolling since those

optimizations may increase code size. They are also concerned

with producing code that is independent of the operating system

and virtual machine, and to that end they implemented a generic

object format that must be linked on the client, which results in

high overhead.

The design philosophy of this work is that any task that can be

performed on the server should be done there since servers can

be expected to be much more capable machines.

Newsome andWatson [13] describe a proxy compilation scheme

called MoJo in which a server compiles Java class files to C

source code and then to an object file to be used by a client using

GNU gcc. MoJo handles only a subset of Java and does not allow

recompilation of ―hot‖ methods but rather compiles whole class

files at once. In this sense, MoJo acts more like a way-ahead-of-

time compiler that batch compiles for its clients. Client execution

is halted until compiled code is received.

This work differs, optimization of ―hot‖ methods are only

considerd, interleaving execution with optimization request.

There has been some effort in distributing compilation of static

programming languages such as C. The problem is that these

approaches are trying to reduce overall compilation wait-time

and is much simpler to solve since everything can be compiled.

7.2 Task Migration

The idea of offloading compilation onto a dedicated server can be

considered as a specific instance of task migration.

Flinn et al. [7] describe a framework that automatically

downloads tasks to a wired server based on information provided

by the application and past profiles. Their work also incorporates

a notion of ―fidelity‖. For example, their system may decide

based on the environment to use either the full or a short

vocabulary for a speech recognition system.

Teodorescu and Pandey [17] describe a Java system that is

distributed across servers and resource-limited devices. The

resource-limited devices run minimal kernels that download

parts of the run-time system on demand. The granularity of

transferring code is a method. However, all compilation is done

on the server.

8. CONCLUSION

So a compilation server is effective in reducing the compilation

time both in massive compilation and in repetitive compilation. It

is not simply a tool for reducing the compilation time, but can

function as a central tool in a programming environment. This is

because the symbols and parse trees kept in the server process

represent almost all the aspects of the source files compiled.

A compilation server compiles client code at the granularity of

methods to reduce or eliminate the cost associated with dynamic

compilation. Compilation server is able to handle more than 50

concurrent clients while still allowing them to outperform best

performing adaptive configuration. CS is also effective at

reducing clients‘ end-to-end execution times, pause times, and

memory consumption. Being able to migrate compilation onto a

remote server using CS approach will have significant impact on

the way virtual machines and optimizations are designed and

implemented.

9. REFERENCES

[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney,

2000. Adaptive optimization in the Jalape˜no JVM. In

Proceedings of the Conference on Object-Oriented

Programming, Systems, Languages, and Applications.ACM

Press, Minneapolis, MN, 47–65.

[2] M. Burke, J. D. Choi, S. Fink, D. Grove, M. Hind, V.

Sarkar, M. Serrano, V. C. Sreedhar, and H. Srinivasan,

1999. The Jalape˜no dynamic optimizing compiler for Java.

In ACM Java Grande Conference. ACM Press, San

Francisco, CA, 129–141.

[3] P. Cheng, and G. E. Blelloch, 2001. A parallel, real-time

garbage collector. In Proceedings of the ACM SIGPLAN

2001 Conference on Programming Language Design and

Implementation. ACM Press, Snowbird, UT, 125–136.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F.

K. Adeck, 1991. Efficiently computing static single

assignment form and the control dependence graph. ACM

Transactions on Programming Languages and Systems

(TOPLAS) 13, 4, 451–490.

[5] B. Delsart, V. Joloboff, And E. Paire, 2002. JCOD: A

lightweight modular compilation technology for embedded

Java. In Proceedings of the Second International Conference

on Embedded Software. Springer-Verlag, Grenoble, France,

197–212.

[6] D. Detlefs, and O. Agesen, 1999. Inlining of virtual

methods. In Proceedings of the 13th European Conference

on Object-Oriented Programming. Springer-Verlag, Lisbon,

Portugal, 258–278.

[7] J. Flinn, D. Narayanan, And M. Satyanarayanan, 2001. Self-

tuned remote execution for pervasive computing. In 8th

Workshop on Hot Topics in Operating Systems (HotOS-

VIII. IEEE Computer Society Press, Schloss Elmau,

Oberbayern, Germany.

[8] D. G. Foster, ‗Separate compilation in a Modula-2

compiler‘, Software–Practice and Experience 16,101–106

(1986).

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha, 2000. Java

Language Specification, Second Edition: The Java Series.

Addison-Wesley Longman Publishing Co., Inc., Boston,

MA.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

96

[10] J. Gutknecht, ‗Separate compilation in Modula-2: an

approach to efficient symbol files‘, IEEE Software,3, (11),

29–38 (1986).

[11] U. H¨olzle, and D. Ungar, 1994. A third-generation SELF

implementation: reconciling responsiveness with

performance. In Proceedings of the Ninth Annual

Conference on Object-oriented Programming Systems,

Language, and Applications. ACM Press, Portland, OR,

229–243.

[12] H. B. Lee, D. Von Dincklage, A. Diwan, and J. E. B. Moss,

2007. Design, implementation, and evaluation of a

compilation server. ACM Trans. Program. Lang. Syst. 29, 4,

Article 18 (August 2007).

[13] M. Newsome, And D. Watson, 2002. Proxy compilation of

dynamically loaded Java classes with MoJo. In Proceedings

of the Joint Conference on Languages, Compilers and Tools

for Embedded Systems. ACM Press, Berlin, Germany, 204–

212.

[14] T. Onodera, Reducing Compilation Time by a Compilation

Server IBM Research, Tokyo Research Laboratory, 5–19

Sanbancho, Chiyoda-ku, Tokyo 102, Japan

[15] J. Palm, H. Lee, A. Diwan, And J. E. B. Moss, 2002. When

to use a compilation service? In Proceedings of the Joint

Conference on Languages, Compilers and Tools for

Embedded Systems. ACM Press, Berlin, Germany, 194–203.

[16] M. Paleczny, C. Vick, and C. Click, 2001. The java

hotspot(tm) server compiler. In Java Virtual Machine

Research and Technology Symposium. The Usenix

Association, Monterey, CA.

[17] R. Teodorescu, And R. Pandey, 2001. Using JIT compilation

and configurable runtime systems for efficient deployment

of Java programs on ubiquitous devices. In Ubiquitous

Computing 2001, LNCS 2201. Springer Verlag, Atlanta,

GA, 76–95.

