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ABSTRACT 
The paper discusses encryption schemes such as public key 

algorithms (RSA) and One Time Pads. It also discusses 

various attacks on the RSA algorithm. A brief introduction to 

Modular Arithmetic, which is the core arithmetic of almost 

all public key algorithms, has been given.  In this paper we 

propose a variant to the RSA algorithm which is effective 

against Wiener’s Short Secret Exponent attack. The security 

and the efficiency of the proposed variant have also been 

discussed. 
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1.INTRODUCTION 
The data transferred from one system to another over public 

network can be protected by the method of encryption. On 

encryption the data is encrypted/scrambled by any encryption 

algorithm using the „key‟. Only the user having the access to the 

same „key‟ can decrypt/de-scramble the encrypted data. This 

method is known as private key or symmetric key cryptography. 

There are several standard symmetric key algorithms defined. 

Examples are AES, 3DES etc. These standard symmetric 

algorithms defined are proven to be highly secured and time 

tested. But the problem with these algorithms is the key 

exchange. The communicating parties require a shared secret, 

„key‟, to be exchanged between them to have a secured 

communication. The security of the symmetric key algorithm 

depends on the secrecy of the key.  Keys are typically hundreds 

of bits in length, depending on the algorithm used. Since there 

may be number of intermediate points between the 

communicating parties through which the data passes, these keys 

cannot exchange online in a secured manner. In a large network, 

where there are hundreds of system connected, offline key 

exchange seems too difficult and even unrealistic. This is where 

public key cryptography comes to help. Using public key 

algorithm a shared secret can be established online between 

communicating parties with out the need for exchanging any 

secret data.  

In public key cryptography each user or the device taking part in 

the communication have a pair of keys, a public key and a private 

key, and a set of operations associated with the keys to do the 

cryptographic operations. Only the particular user/device knows 

the private key whereas the public key is distributed to all 

users/devices taking part in the communication. Since the 

knowledge of public key does not compromise the security of the 

algorithms, it can be easily exchanged online.   

In public key cryptography, keys and messages are expressed 

numerically and the operations are expressed mathematically. 

The private and public key of a device is related by the 

mathematical function called the one-way function. One-way 

functions are mathematical functions in which the forward 

operation can be done easily but the reverse operation is so 

difficult that it is practically impossible.  In public key 

cryptography the public key is calculated using private key on the 

forward operation of the one-way function. Obtaining of private 

key from the public key is a reverse operation. If the reverse 

operation can be done easily, that is if the private key is obtained 

from the public key and other public data, then the public key 

algorithm for the particular key is cracked. The reverse operation 

gets difficult as the key size increases. The public key algorithms 

operate on sufficiently large numbers to make the reverse 

operation practically impossible and thus make the system 

secure. For e.g. RSA algorithm operates on large numbers of 

thousands of bits long. 
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2.MATHEMATICAL BACKGROUND – 

MODULAR ARITHMETIC 
Modular Arithmetic [1] is also known as “clock” arithmetic. 

Basically a ≡ b (mod n) if a= b+kn for some integer k. If a is non 

negative and b is between 0 and n, one can think of b as the 

remainder of a when divided by n. Sometimes, b is called the 

residue of a, modulo n. a is called congruent to b, modulo n. „≡‟ 

denotes congruence. 

The set of integers from 0 to n-1 form what is called a complete 

set of residues modulo n. This means that, for every integer a, its 

residue modulo n is some number from 0 to n-1. This operation 

is called modular reduction. 

The general problem that arises during public key encryption 

schemes is to find two number „x‟ such that 1 = (a*x) mod n 

where „a‟ is the one of the keys used in public key encryption. 

This is also written as a-1 ≡ x (mod n). This modular inverse 

problem is difficult to solve. Sometimes it has a solution 

sometimes not. For example inverse of 5 modulo 14 is 3, and on 

the other hand 2 has no inverse modulo 14.  

In general a-1 ≡ x (mod n) has a unique solution if a and n are 

relatively prime. If n is a prime number then every number from 

1 to (n-1) is relatively prime to n and has exactly one inverse 

modulo n in that range.  

3.  ENCRYPTION TECHNIQUES 
The various encryption techniques on which this paper is based 

are  

1. One-Time pads[1] 

2. Public key algorithm( RSA ) 

3.1One-Time Pads 
This encryption scheme was invented in 1917 by Major Joseph 

Mauborgne and AT & T‟s Gilbert Vernam[2]. Classically, a one-

time pad is nothing more than a large non repeating set of truly 

random key letters, written on sheets of paper, and glued together 

in a pad. In its original form, it was a one-time tape for 

teletypewriters. The sender uses each key letter on the pad to 

encrypt exactly one plain text character. Encryption is the 

Addition Modulo 26 of the plaintext character and the one-time 

pad key character. Each key letter is used exactly once, for only 

one message. The sender encrypts the message and then destroys 

the used pages of the pad or used section of the tape. The 

receiver has an identical pad and uses each key on the pad, in 

turn, to decrypt each letter of the ciphertext. The receiver 

destroys the same pad pages or tape sections after decrypting the 

message. New message-new key letters. 

eg. If the message is :  

COPYLEFT  

And the key sequence from the pad is : 

EFWJMDSZ 

Then the ciphertext is: 

HUMIYIYT. 

Assuming an eavesdropper can‟t get access to the one-time pad 

used to encrypt the message this scheme is perfectly secure. A 

given ciphertext message is equally likely to correspond to any 

possible plaintext message of equal size. 

Since every key sequence is equally likely, an adversary has no 

information with which to cryptanalyze the ciphertext. The key 

sequence could just as be: 

DTIVSDBT 

This would decrypt to: 

LOVERMAN 

This point bears repeating: Since every plaintext message is 

equally possible, there is no way for the cryptanalyst to 

determine which plaintext message is the correct one. A random 

key sequence added to a nonrandom plaintext message produces 

completely random ciphertext message and no amount of 

computing power can change that. 

The caveat is that the key letters have to be generated randomly. 

Any attack this scheme will be against the method used to 

generate the key letters. The other important point is that one can 

never use the same key sequence again. 

The idea of one-time pad can be easily extended to binary data. 

Instead of one-time pad consisting of letters, use a one-time pad 

of bits. 

Since the key bits must be random and can never be used again, 

the length of the key sequence must be equal to the length of the 

message. Practically this encryption scheme works best for short 

messages. 

3.2Public Key Encryption 
Encryption is a process in which the sender encrypts/scrambles 

the message in such a way that only the recipient will be able to 

decrypt/ descramble the message. 

Consider a device B whose private key and public key are PB and 

UB respectively.  Since UB is public key all devices will be able 

to get it. For any device that needs to send the message „Msg‟ in 

a secured way to device B, it will encrypt the data using B‟s 

public key to obtain the cipher text „Ctx‟. The encrypted 

message, cipher text, can only be decrypted using B‟s private 

key. On receiving the message the B decrypts it using its private 

key PB Since only B knows its private key PB, none other 

including A can decrypt the message. 

Ctx = Encrypt ( Msg , UB ) 

Msg = Decrypt ( Ctx , PB ) 

3.2.1RSA Algorithm 
Of all the public-key algorithms proposed over many years, 

RSA[3] is by far the easiest to understand and implement. It is 

also the most popular. Named after the three inventers – Ron 

Rivest, Adi Shamir, and Leonard Adleman – it has since 

withstood years of extensive cryptanalysis. Although the 

cryptanalysis neither proved nor disproved RSA‟s security, it 

does suggest a confidence level in the algorithm.  
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RSA gets its security from the difficulty of factoring large 

numbers. The public and private keys are functions of a pair of 

large (100 to 200 digits or even larger) prime numbers. 

Recovering the plain text from the public key and the ciphertext 

is conjectured to be equivalent to factoring the product of the two 

primes. 

To generate the two keys, choose two random large prime 

numbers, p and q. for maximum security, choose p and q of equal 

length. Compute the product: 

 n=pq 

Then randomly choose the encryption key, e, such that                 

e and (p-1)(q-1) are relatively prime. Finally, use the extended 

Euclidean Algorithm[1] to compute the decryption key, d, such 

that    

 ed≡1 mod(p-1)(q-1) 

In other words,  

 d=e-1mod ((p-1)(q-1)) 

Note that d and n are also relatively prime. The numbers e and n 

are the public key; the number d is the private key. The two 

primes, p and q, are no longer needed. They should be discarded 

but, never revealed. 

To encrypt a message m, first divide it into numerical blocks 

smaller than m. That is, if both p and q are 100-digit primes, 

then n will have just under 200 digits and each message blocks, 

mi, should be just under 200 digits long. The encrypted message, 

c, will be made up of similarly sized message blocks, ci, of about 

the same length. The encryption formula is simply 

 Ci = mi
e mod n 

To decrypt a message, take each encrypted block ci and compute 

 mi = ci
d mod n 

eg: In this example we will group the characters into blocks of 

three and compute a message representative integer for each 

block.  

ATTACKxATxSEVEN = ATT ACK XAT XSE VEN 

In the same way that a decimal number can be represented as the 

sum of powers of ten, e.g. 

135 = 1 x 102 + 3 x 101 + 5, 

we could represent our blocks of three characters in base 26 

using A=0, B=1, C=2, ..., Z=25  

ATT = 0 x 262 + 19 x 261 + 19 = 513  

ACK = 0 x 262 + 2 x 261 + 10 = 62  

XAT = 23 x 262 + 0 x 261 + 19 = 15567  

XSE = 23 x 262 + 18 x 261 + 4 = 16020  

VEN = 21 x 262 + 4 x 261 + 13 = 14313  

In this system of encoding, the maximum value of a group (ZZZ) 

would be 263-1 = 17575, so we require a modulus n greater than 

this value.  

1. We "generate" primes p=137 and q=131. 

2. n = pq = 137.131 = 17947 

φ = (p-1)(q-1) = 136.130 = 17680  

3. Select e = 3 

check gcd(e, p-1) = gcd(3, 136) = 1, OK and 

check gcd(e, q-1) = gcd(3, 130) = 1, OK.  

4. Compute d = e-1 mod φ = 3-1 mod 17680 = 11787.  

5. Hence public key, (n, e) = (17947, 3) and private key 

(n, d) = (17947, 11787).  

To encrypt the first integer that represents "ATT", we have 

c = me mod n = 5133 mod 17947 = 8363. 

We can verify that our private key is valid by decrypting 

m' = cd mod n = 836311787 mod 17947 = 513.  

Overall, our plaintext is represented by the set of integers m 

(513, 62, 15567, 16020, 14313) 

We compute corresponding ciphertext integers c = me mod n, 

(which is still possible by using a calculator)  

(8363, 5017, 11884, 9546, 13366) 

You are welcome to compute the inverse of these ciphertext 

integers using m = cd  mod n to verify that the RSA algorithm 

still holds. However, this is now outside the realms of hand 

calculations.       

3.2.2Previous Attacks on RSA 
In this section we summarize several previously known attacks 

on the RSA public-key cryptosystem relevant to this work. We 

follow the presentation of the recent survey 

3.2.2.1Factoring 
The most straight forward attack on RSA is factorization of the 

modulus n = pq. Once a factor p is discovered, the factor q = n/p 

may be computed, so φ(n) = n − p − q + 1 is revealed. This is 

enough to compute d ≡ e−1 mod φ(n ). 

    The current fastest method for factoring is the General 

Number Field Sieve [4].  It has a running time of                     

exp (c + o (1)) · (log N )1/3 (log log N )2/3 for some 1 < c <2. The 

size of N is chosen to foil this attack. The largest integer that has 

been successfully factored using this method was the 512-bit 

RSA challenge modulus RSA-155, factored in 1999 using a 

massive distributed implementation of GNFS on the Internet [6]. 

Even though the speed of computer hardware continues to 

accelerate, it seems unlikely that the best factoring algorithms 

will be able to factor say 1024-bit RSA modulo in the next 

twenty years. 

3.2.2.2 Hastad’s Attack on Broadcasted Messages  

 
In order to speed up RSA encryption (and signature verification) 

it is useful to use small value for the public exponent e, say e = 

3. However, this opens up RSA to the following attack, 

discovered by Hastad [5]. 

    Let us start with a simpler version. Suppose Bob wishes to 

send the same message M to k recipients, all of whom are using 

public exponent equal to 3. He obtains the public keys Ni , ei for i 

= 1, . . . , k, where ei = 3 for all i. Naively, Bob computes the 
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ciphertext Ci = M3 mod Ni for all i and sends Ci to the ith 

recipient. 

A simple argument shows that as soon as k ≥ 3, the message M is 

no longer secure. Suppose Eve intercepts C1 , C2 , and C3 , where 

Ci = M3 mod Ni . We may assume gcd(Ni , Nj ) = 1 for all i ≠ j 

(otherwise, it is possible to compute a factor of one of the Ni ‟s.) 

By the Chinese Remainder Theorem, she may compute              

C Є Z*
N1N2N3 such that C ≡ Ci mod Ni . Then C ≡ M 3 mod N1 N2 

N3 ; however, since M < Ni for all i, we have M3 < N1N2N3 . 

Thus C = M3 holds over the integers, and Eve can compute the 

cube root of C to obtain M. 

Hastad proves a much stronger result. To understand it, consider 

the following naive defense against the above attack. Suppose 

Bob applies a pad to the message M prior to encrypting it so that 

the recipients receive slightly different messages. For instance, if 

M is m bits long, Bob might encrypt i · 2m + M and send this to 

the ith recipient. Hastad proved that this linear padding scheme is 

not secure. In fact he showed that any fixed polynomial applied 

to the message will result in an insecure scheme.  

3.2.2.3Coppersmith Attack on Short Random Pads 
Like the previous attack, this attack exploits a weakness of RSA 

with public exponent e = 3. Coppersmith showed that if 

randomized padding is used improperly then RSA encryption is 

not secure [6]. Coppersmith addressed the following question: if 

randomized padding is used with RSA, how many bits of 

randomness are needed? 

To motivate this question, consider the following attack. Suppose 

Bob sends a message M to Alice using a small random pad 

before encrypting. Eve obtains this and disrupts the transmission, 

prompting Bob to resend the message with a new random pad. 

The following attack shows that even though Eve does not know 

the random pads being used, she can still recover the message M 

if the random pads are too short. 

For simplicity, we will assume the padding is placed in the least 

significant bits, so that Ci = (2m M + ri )
e mod N for some small 

m and random r < 2m . Eve now knows 

 C1 = (2m M + r1 )
e(mod N ) and  

 C2 = (2m M + r2 )
e(mod N )                           

for some unknown M , r1 , and r2 . Define f (x, y) := xe −C1 and 

g(x, y) := (x+y)e −C2 . We see that when x = 2m M + r1 , both of 

these polynomials have y = r2 − r1 as a root modulo N . We may 

compute the resultant h(y) := Resx (f, g) which will be of degree                                                                

at most e2 Then y = r2 −r1 is a root of h(y) modulo N . If |ri | < 

(1/2)N (1/e)2 for i = 1, 2 then we have that |r2 − r1 | < N 1/e . By 

Coppersmith‟s Theorem we may compute all of the roots h(y), 

which will include r2 − r1 . Once r2 − r1 is  discovered, we may 

use a result of Franklin and Reiter [9] to extract M  

THEORM (Univariate Coppersmith): Let a monic polynomial 

f(x) of degree d with integer coefficients and integers X, M be 

given. Suppose X < M(1/d)-Є for some Є > 0. There is an 

algorithm to find all x0 Є Z satisfying |x| <X and f(x0) ≡ 0 mod 

M. This algorithm runs in time O (TLLL (md, m log M)) where m 

= O(k/d) for k = min{1/є log M}. 

3.2.2.4 Wiener’s Attack on Short Secret Exponent 
To speed up RSA decryption and signing, it is tempting to use a 

small secret exponent d rather a random d ≤ φ(N ). Since 

modular exponentiation takes time linear in log2 d, using a d that 

is substantially shorter than N can improve performance by a 

factor of 10 or more. For instance, if N is 1024 bits in length and 

d is 80 bits long, this results in a factor of 12 improvement while 

keeping d large enough to resist exhaustive search. 

   Unfortunately, a classic attack by Wiener [7] shows that a 

sufficiently short d leads to an efficient attack on the system. His 

method uses approximations of continued fractions. This attack is 

stated in the following theorem. 

THEORM: Suppose N = pq and √(N/2)< q < p <√N. 

Furthermore d<⅓N (1/4). There is an algorithm which, given N 

and e, generates a list of length log(N) of candidates for d, one 

of which will equal d. This algorithm runs in time linear in 

log(N). 

3.2.2.5 Cryptanalysis via the Defining Equation 
Since ed ≡ 1 mod φ(N), this implies there exists an integer k 

such that 

                 ed + k(N + 1 − (p + q)) = 1. 

As discussed earlier, a break of the RSA public key cryptosystem 

can be defined in several ways. Most obviously the scheme is 

broken if an attacker is able to recover the secret exponent d. 

Since factorization of the modulus N = pq leads to recovery of the 

private key d, this is also a total break. All of the attacks 

presented in subsequent chapters are of this type, and involve 

either a direct computation of the private key d or one of the 

factors p of the public modulus N , given the public key 

information N, e alone.                                 

We note that this immediately allows the recovery of the 

factorization of N ; indeed, when s = p + q, then p and q are the 

two roots of the equation x2 − sx + N = 0. 

 

4.PROPOSED VARIENT OF RSA 
As stated above in Wiener‟s attack on Short Secret Exponent, if 

the value of the private key i.e. d is upto one quarter the size of n 

and e < n then the attack will recover d, but on the other hand 

this small value of d enhances the efficiency of the cryptosystem.  

Based on this we propose a new variant of RSA which uses a 

comparatively small value of d and is almost resistant to 

Wiener‟s attack. 

ASSUMPTIONS: 

1. ‘a’ is the plaintext message. 

2. ‘b’ is the RSA ciphertext. 

3. <e , n> is the public key. 

4. <d> is the private key. 

5. ‘x’ is the randomly generated number 

6. f(b,x) is the selected function which is to be applied on 

the RSA ciphertext. 

ENCRYPTION ALGORITHM. 
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1. Compute the values of  the public key and private key.  

2.  Encrypt „a‟ using the RSA algorithm. 

3. Generate the random number[1] x, such that it has 

many factors and is hard to predict using brute force. 

4. Let  β = f(b,x) be a function on b and x and should have 

the following properties: 

a. The function should be one-to-one onto 

function. 

b. The function should be invertible 

c. It should always return an integer value. 

5. Encrypt x using one-time pad encryption technique, and 

along with the encrypted message β transmit it to the 

recipient.  

DECRYPTION ALGORITHM 

1. Decrypt x using the shared one-time pad 

2. Apply inverse of function f(b , x) on β.  

b=f-1(β, x) 

3. Retrieve original plaintext „a‟ using private key d 

a = b
d
 mod n  

 

This above mentioned function f(b , x) need not necessarily be an 

arithmetic function. It can be logical, discrete and even can be a 

quantum operation. 

This function should always be changed with every session of 

communication. The functions selected for this purpose should be 

represented by a binary value and these bits should be padded to 

the random number „x‟. When receiver receives the one-time pad 

message he should be able to recognize the function applied and 

thus the inverse of the function should be again applied on β 

using the recovered value x and thus calculate „b‟. This can be 

achieved by keeping a log of such functions in the encryption 

software such that it reads the binary representation of the 

function and search for the same in the log and apply its inverse. 

The idea of using one-time pads is that this encryption technique 

works best for short messages and this scheme is very hard to 

break as the probability of committing mistakes is very low and 

so is the probability of breaking this encryption technique. We 

can also use the Hybrid one-time pads for this purpose. The most 

wonderful feature of this technique is that many keys lead 

ultimately to a legitimate message so the attacker can never 

determine when he has actually broken the code. 

Moreover, as we choose a comparatively small value of d, this 

decreases the complexity of RSA algorithm upto 1/10th of the 

usual one. Thus this variant of RSA is more efficient and is easy 

to implement too. We just need to select such functions that can 

be applied to the RSA code and value of x should be actually 

random because most of the random generators have non-random 

properties. 

We can illustrate all our proposed theory by the following 

Example: 

First consider a message „a‟ and public key < e , n> and private 

key <d>. 

 Let a=62415, e=197, n=1363, d=85. 

We take the block length as 2.Thus the message can be re-

written as: 

  62 41 05 

As we can see the digit 5 has been padded with 0. 

We calculate the code „b‟ by using: 

 b=ae mod n; 

 (62197) mod 1363=91 

 (41197) mod 1363=389 

 (05197) mod 1363=701 

The encrypted code is: 91 389 701. 

Now suppose the randomly generated number is 783(We have 

taken a small value for x. But in general x should be minimum 

128 bits).we choose the function to be b^x(X-or).Actually this 

function should not be practically used as X-or encryption is easy 

to break. But we have taken this just to make calculations easy. 

 Thus β=852 650 434. 

Now this message is transmitted along with 783 encrypted with 

Hybrid one-time pads in which the binary representation of the 

function X-or is padded. 

Now the receiver will get the dual encrypted message and the 

value of randomly generated number through one-time pad 

decryption. Thus the receiver decrypts the code as below: 

  b=β^x(X-or). 

  852^783=91. 

  650^783=389. 

  434^783=701. 

  b=91 389 701.  

Now the original message „a‟ can be calculated as: 

  a=bd mod n. 

  (9185) mod 1363=62 

  (38985) mod 1363=41 

  (70185) mod 1363=5 

 Recovered a=62 41 5. 

4.1 Security and Advantages 
The major problem of using short private key in RSA algorithm 

is that the private key can be retrieved using approximations of 

continued fractions. But the disadvantage of using long private 

key is that the complexity of the algorithm highly increases. In 

hardware, RSA is among thousand times slower than DES. The 

fastest VLSI hardware implementation for RSA with 512-bit 

modulus has a throughput of 64 kilo bit per second[8]. There are 

also chips that perform 1024-bit RSA encryption. These numbers 

may change slightly as technology changes, but RSA will never 

approach the speed of symmetric algorithms.  
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By using the proposed variant the size of the private key „d‟ can 

be kept short in turn reducing the complexity related to the large 

private key encryption. 

The basic idea behind this variant is to dually encrypt the 

plaintext one RSA and other by such an algorithm which is hard 

to break (like ONE-TIME PADs).  

 

The chances of a short secret exponent attack are very much less 

in this variant because  

 If the attacker is successful in getting the private key 

„d‟ using the Wiener‟s attack on short secret exponent 

he has no knowledge of the random number x, used to 

calculate function f(b , x). 

 Since x can return more than one legitimate answer the 

attacker will have many decrypted messages having no 

knowledge of the correct message. 

 The function applied on x and b is varied constantly 

thus finding the inverse of the function also becomes 

difficult. 

 Decrypting the value of x is also difficult as the one-

time pad encryption on small values is hard to decrypt 

attacked. Moreover, with every session the value of x 

and the function gets changed and x is never repeated.  

Thus this variant is much more efficient than using large public 

and private key values.   
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