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ABSTRACT 

Paraphrasing refers to conveying the same content in several 

ways. The successful recognition of paraphrases is crucial to 

various natural language processing tasks such as Information 

Extraction, Document Summarization, Question Answering etc. 

Several techniques have been employed for paraphrase 

recognition using lexical, syntactic and semantic features. Many 

of these systems have been tested on the MicroSoft Research 

Paraphrase Corpus. But the performance of these systems has 

scope for further improvement. Since neural network 

architectures model the human brain structure which excels at 

natural language processing tasks, this paper presents a neural 

network classifier for recognizing paraphrases. A combination of 

lexical, syntactic and semantic features has been used to train a 

Back Propagation network. The system can be utilized for 

detecting similar sentences in applications such as Question 

Answering and detection of plagiarized content. 
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[Learning]: Connectionism and Neural nets 
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1. INTRODUCTION 
Natural Language Processing (NLP) focuses on developing 

computer systems that can analyze, understand and generate 

natural human-languages. One of the major difficulties faced in 

natural language processing is ambiguity where the same text has 

several possible interpretations. Another equally challenging 

aspect is that the same content can be conveyed in different 

ways. This is termed as Paraphrasing. Paraphrases can occur at 

the word level, phrase level, sentence level or discourse level. A 

typical example of sentence level paraphrasing is the following 

pair of statements “Tata acquires Jaguar” and “Jaguar sold to 

Tata”.  

 

 

Research problems related to paraphrasing are Paraphrase 

generation, Paraphrase extraction and Paraphrase recognition. 

Paraphrase generation which is a Natural language generation 

problem is the process of generating alternative forms of the 

input text. This finds application in areas such as document 

summarization and machine translation. Paraphrase Extraction 

involves the identification or discovery of paraphrases from a 

large corpus and finds application in Information Extraction 

tasks.  

Paraphrase recognition is the task of recognizing the presence of 

paraphrases in a given corpus. A variant of this is the text 

entailment problem, which takes two sentences as input and 

decides whether one of them can be inferred from the other. 

Paraphrasing is considered as a case if bi-directional text 

entailment. Paraphrase recognition is applicable in domains such 

as Information Extraction, Plagiarism detection and Question 

Answering. Experiments in the English language paraphrasing 

domain have been carried out on various notable corpora such as 

the Microsoft Research Paraphrase Corpora (MSRPC), 

Recognizing Text Entailment Corpora and Machine Translation 

resources. Similar experiments have also been carried out for 

Spanish, Japanese and Chinese languages. Commonly used 

scoring metrics for rating the performance of a system are 

Precision, Recall and F-measure. 

This paper presents the work carried out on paraphrase 

recognition using a Neural network classifier. Though various 

machine learning techniques such as Decision trees, Support 

Vector Machines have been employed for the task no reported 

work exists on Neural Network based paraphrase recognizers. 

Section 2 of this paper gives an overview of features suitable for 

Paraphrase recognition. Section 3 of the paper details several 

techniques used in Paraphrase recognition. Section 4 presents the 

work on the Neural Network based paraphrase recognizer. 

2. FEATURES FOR RECOGNIZING 

SEMANTIC EQUIVALENCE 
This section briefly discusses the various features of text [1] 

which help to recognize Paraphrases. The features can be 

classified as Lexical, Syntactic and Semantic. Composite features 

can be formed by combining two aspects such as the Lexical and 

Semantic attributes. 

 



©2010 International Journal of Computer Applications (0975 - 8887)  

Volume 1 – No. 29 

44 

 

2.1 Lexical Features 

These characterize the surface similarity or degree of word 

overlap between the candidate sentences. A list of lexical 

features used in paraphrase recognition is given below.  
 Unigrams – measures the number of shared words 

between the two sentences. Unigram precision and recall 

are the number of shared words divided by the length of 

the first sentence and second sentence respectively. 

Lemmatized unigram precision and recall are calculated 

after replacing words by their lemmas.  

 Word error rate (WER) (Su et al., 1992) - a measure of 

the number of edit operations required to transform one 

sentence into another. It is also termed as Levenshtein 

Edit distance. 

 Position-independent word error rate (PER) (Tillmann et 

al., 1997) - Similar to WER except that word order is not 

taken into account. 

 Bi-Lingual Evaluation Understudy (BLEU) precision 

score (Papineni et al., 2001) - based on the geometric 

mean of n-gram matches. After reversing the order of the 

sentences, the BLEU recall score is calculated.  

 Longest Common Substring and Subsequence – identify 

the longest common sequence of consecutive and non-

consecutive words shared by the input sentence pair 

respectively.  

 Modified N-gram precision - a variation of the BLEU 

measure which considers directional n-gram matches 

between the sentence pair. 

 N-gram overlap measures – N-grams are sub-sequences of 

n-items from a given sequence. N-gram overlap measures 

identify the number of shared n-grams between the 

sentences. 

 Skip-gram overlap measures – Skip-grams are non-

consecutive sequences of words using a skip distance k. 

Skip-gram overlap measures are calculated by dividing 

the number of common skip-grams by the number of word 

combinations in the sentences.  

 Exclusive longest common prefix N-gram overlap – This 

measure extends the simple n-gram overlap measure. It 

disregards all lower order subgrams of a maximal n-gram 

when the number of overlapping n-grams is calculated.  

2.2 Syntactic Features 
These analyse the degree of structural similarity between the pair 

of sentences. Some of the commonly used Syntactic features are:  

 Dependency tree edit distance - A dependency tree is a 

syntactic representation of a sentence.  Dependency tree 

edit distance measures the similarity of dependency trees. 

 Dependency relation overlap features - A dependency 

relation is a pair of words with a parent-child relationship 

within the dependency tree. Dependency relation overlap 

features measure the extent of overlap of dependency 

relations between the two sentences.  

 The morphological variants feature - identifies the Co-

occurrence of morphological variants in sentence pairs. 

The words “compute” and “computing” are 

morphological variants. 

2.3 Semantic Features 
Several Semantic similarity features exist based on the WordNet 

database. These measures are termed as Knowledge based 

measures as they rely on additional resources such as the 

Wordnet dictionary. In the WordNet taxonomy, nodes represent 

concepts or words and edges represent the relations between the 

concepts. The Knowledge based measures [13] include: 

 Leacock and Chodorow (1998) measure is calculated in 

terms of the length of the shortest path between two 

concepts using node counting and the maximum depth of the 

taxonomy. 

 Lesk (1986) measure is a function of overlap between 

corresponding dictionary definitions. 

 Wu and Palmer(1994) measure is based on the depth of two 

given concepts in the WordNet taxonomy and the depth of 

the Least Common Subsequence (LCS). 

 Resnik (1995) measure assesses the information content of 

the LCS of two concepts. Information content of a concept c, 

is the probability of encountering it in a large corpus.  

 Lin(1998) measure extends Resnik‟s measure by 

considering the Information content of two concepts besides 

the Information content of the LCS.   

 Jiang and Conrath(1997) measure is assessed as the inverse 

of the Information content of the two concepts and also their 

LCS.  

2.4 Features used in Paraphrase Recognition 
Fernando and Stevenson (2008) have used semantic features to 

measure the similarity between a pair of sentences [5]. The Jiang 

and Conrath measure was found to be superior to other metrics. 

The authors have suggested the incorporation of syntactic 

features to improve performance. Zhang and Patrick (2006) have 

used a variety of initial syntactic transformations along with 

lexical features to decide whether the input sentences are 

paraphrases [16]. Some of the syntactic transformations used 

were replacement of number entities with generic tags and 

passive-to-active voice change. The lexical features used were 

Longest Common Substring and Edit Subsequence, Edit distance 

and Modified N-gram precision. The results of the experiments 

show that pure lexical matching could be improved by including 

even preliminary syntactic transformations. Zhang et al have also 

suggested the inclusion of Lexical Semantic features to further 

improve performance. 

Brockett and Dolan (2005) have used a combination of Lexical, 

Syntactic, Semantic and Composite features to perform 

paraphrase identification using Support Vector Machines [2]. 

Lexical features such as unigrams, word based edit distance and 
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edit distance calculated after converting the sentences to 

alphabetized strings have been used. The syntactic morphological 

variants feature and WordNet mapping features based on 

Synonymy and Hypernymy have also been used. Edit distance 

and the co-occurrence of morphological variants features were 

found to be the most effective features. 

Wan, Dras, Dale and Paris (2006) in their work on paraphrase 

generation have employed a machine learning classifier to 

identify paraphrases [15]. Both lexical, syntactic feature classes 

have been used. The Lexical Features include N-gram Overlap 

features based on Unigrams, Lemmatized Unigrams, BLEU and 

lemmatized BLEU. Dependency relation overlap feature and 

dependency tree edit distance are the syntactic measures that 

have been used. Dependency based features clubbed with bi-

gram features were found to exhibit the best performance.  

Kozareva and Montoyo (2006) have used purely lexical and 

semantic features for Paraphrase identification [11]. The lexical 

features used were the Longest Common Subsequence and Skip-

gram overlap. The semantic features include the Jiang and 

Conrath noun/verb semantic similarity measure, proper name 

matches and cardinal number coincidences. The lexical features 

correctly determined the non-paraphrase pairs whereas the 

semantic features were found to be good at identifying the 

paraphrases. The authors have suggested that including syntactic 

information will be beneficial.   

Finch, Hwang and Sumita (2005) have extended basic lexical 

measures such as WER, BLEU and PER to incorporate both 

semantic and syntactic information [6].  The purely lexical edit 

distance has been extended by considering the semantic distance 

between words calculated using the Jiang and Conrath similarity 

measure. The PER was also calculated for each Part Of 

Speech(POS) separately. Extending the PER feature based on 

POS information was found to improve the performance.  

Rus, McCarthy, Lintean, McNamara and Graesser (2008) have 

utilized Lexical, Syntactic and Semantic information for 

paraphrase identification [14]. The significant aspects of this 

work are the usage of syntactic information, enhancing the 

lexical component using Synonymy relations from WordNet and 

Negation handling using Antonymy relations. The authors have 

suggested that weighting words with their specificity value will 

help to improve the performance. 

3. TECHNIQUES FOR PARAPHRASE 

RECOGNITION 
This section presents a study of various techniques used in 

Paraphrase Recognition. Machine learning, graph based approach 

and matrix similarity method have been utilized by various 

researchers.  

3.1 Machine Learning Techniques 

Some of the commonly used machine learning techniques in 

paraphrase identification are Decision trees, Support Vector 

machines, Naïve Bayesian method and the K-Nearest Neighbour 

technique. Zhang and Patrick (2006) have used a decision tree 

based classifier to identify paraphrases after transforming the 

input sentences using canonicalization rules [16]. The rules 

employed were replacement of number entities with generic tags, 

passive-to-active voice change and replacement of specific future 

tense usages with more generic ones. Lexical features extracted 

from the transformed sentences were fed to the decision tree 

classifier. The authors have experimented on the Microsoft 

Research Paraphrase Corpus (MSRPC) and have reported a 

maximum accuracy of 71.9%. 

Brockett and Dolan (2005) have employed Support Vector 

Machines for Paraphrase Identification and Corpus Construction 

[2]. The authors have reported precision and recall values of 

86.76% and 86.39% respectively. Finch et al (2005) have also 

employed a Support Vector Machine Classifier with radial basis 

function kernels for identifying paraphrases based on machine 

learning evaluation features and have reported an accuracy level 

of 74.96% on the MSRPC [6]. 

Wan et al (2006) have employed various machine learning 

classification techniques such as Naïve Bayesian Learner, 

Decision tree based classifier, SVM and K-Nearest Neighbour 

technique to rule out inconsistent paraphrases [15]. The best 

performance was exhibited by Support Vector Machines on the 

MSRPC. The maximum observed accuracy was 75% when a 

combination of several lexical and syntactic features was used. 

Kozareva and Montoyo (2006) have studied the behaviour of 

three machine learning classifiers for identifying paraphrases, 

namely SVMs, k-Nearest Neighbour technique and Maximum 

Entropy method [11]. The SVM technique was found to perform 

better than the other techniques. But the best performance has 

been exhibited by a voting system which involved the three 

machine learning classifiers. The system of [11] has registered 

the highest accuracy level of 76.64% on the MSRPC. 

3.2 Graph Based Approach 
In [14] paraphrases have been recognized using a graph 

subsumption approach. The input sentences are mapped to graph 

structures and subsumption is detected by evaluating graph 

isomorphism. Text A is entailed from B if and only if B 

subsumes A. The entailment score for Text A with respect to 

Text B and B with respect to A have been averaged to determine 

whether A and B are paraphrases. In tests carried out on the 

MSRPC an accuracy value of 70.61% has been observed.  

3.3 Matrix Similarity Method 
Fernando and Stevenson (2008) have utilized a matrix similarity 

method for paraphrase detection [5]. In this work the semantic 

similarity values between all pairs of words have been computed 

using the knowledge based measures [13] and an accuracy of 

74.1% has been reported. 

4. NEURAL NETWORK BASED 

PARAPHRASE RECOGNITION 
Neural networks are computational models inspired by the 

human nervous system and are one of the foremost machine 

learning techniques. Neural architectures are suitable candidates 

for language processing tasks because of their robustness to noisy 

input and their similarity to cognitive thought processes. The task 

of Paraphrase Recognition can be viewed as a binary 
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classification problem. Given a pair of sentences the Recognizer 

must provide a response as to whether the sentences can be 

considered as paraphrases or not. Automatic Paraphrase 

Recognition can be tackled using Machine Learning algorithms. 

Though Neural Networks have been employed for Paraphrase 

Generation [Miikkulainen 1989], there are no known systems 

employing neural networks for the task of Paraphrase 

Recognition 

This paper presents the work on Paraphrase Recognition using a 

Neural Network Classifier. The architecture of the proposed 

system as shown in Figure 1 consists of a Feature Extractor 

module which identifies the various features from the sentence 

pairs present in the training corpus. A feature vector is 

constructed and passed on to the Neural Network Classifier. 

Once the network is trained its performance can be evaluated on 

test data using standard measures such as precision, recall and F-

measure. 

 

 

 

 

 

Figure 1 Paraphrase Recognition using a Neural Classifier 

4.1 Experimental Data 
Experiments have been carried out using the Microsoft Research 

Paraphrase Corpora (MSRPC). This corpora was constructed 

from a collection of Internet news articles and is partitioned into 

the training set and test set. The sentence pairs in the corpora 

were labelled as Positive and Negative cases of Paraphrasing by 

Multiple human annotators. Out of the total collection, 67% of 

paraphrases were found to be present. The training set consists of 

4076 sentence pairs and the test set has 1726 sentence pairs. Of 

these the number of paraphrases in the training set and test set 

are 2753 and 1147 respectively [6].  

4.2 Feature Extraction 
The Feature Extraction module is responsible for extracting 

various features from the input pair of sentences. Recognition of 

semantic equivalence has been found to require processing at the 

lexical level, syntactic level and the sentence semantic level. In 

this work a combination of purely lexical, syntactic, lexical-

semantic and lexical-syntactic features have been used for 

paraphrase recognition as described below. 

4.2.1 String Edit distance extended to permit lexical 

Variations  
The Levenshtein distance also known as Edit distance or Word 

Error Rate (WER) (Su et al. 1992) is a purely lexical measure 

that computes the number of insertions, deletions and 

substitutions required to transform one string into another. With 

respect to processing input sentences S1, S2 if the words in the 

positions i of S1 and j of S2 are the same the cost is 0 else it is 1. 

Usually a dynamic programming approach is used to compute the 

edit distance. A disadvantage of the Edit distance measure is that 

sentences with high lexical alternations or different syntactic 

structures have a high edit distance and are hence not considered 

to be paraphrases even though they may actually be paraphrases.  

In an attempt to overcome this, modified edit distance has been 

used in [6], which instead of looking for exact matches between a 

pair of words uses semantic similarity measures to decide 

whether the words are similar. For determining whether a pair of 

words was semantically similar the Jiang and Conrath measure 

[8] was used in [6].  

Dist(wordi, wordj) = IC(wordi) + IC(wordi) – 2 * 

IC(LSuper(wordi,wordj)) 

Here IC(word1) = -log P(word1)  where P(word1)  is the 

probability of occurrence of word1 in the corpus and 

LSuper(wordi, wordj) denotes the lowest super-ordinate of both 

the words in the WordNet taxonomy. This measure has been 

shown to exhibit superior performance in similarity assessment 

[5]. Hence in this work the modified string edit distance 

computed using the Jiang and Conrath measure which combines 

both lexical and semantic aspects has been used. 

4.2.2 Skip-grams 
An n-gram is a sub-sequence of n-items from a given sequence. 

Similar sentences are expected to have a greater percentage of 

shared n-grams[7]. But simple n-grams tend to overlook non-

contiguous word associations [3]. Skip grams detect non-

contiguous word associations along with the contiguous word 

associations identified by n-grams. Skip-grams are usually 

formed using a skip distance k and allow a total of k or less 

skips. It is a purely lexical measure. A commonly used value for 

k is 4. To assess the degree of similarity between two sentences  

the number of common skip-grams between them has been used. 

4.2.3 BLEU 
The BiLingual Evaluation Understudy (BLEU) metric was 

proposed by Papineni et. al as a method for automatic evaluation 

of machine translation. It is based on the concept of a weighted 

average of similar length phrase matches (n-grams).  The BLEU 

metric has been adapted for assessing similarity between 

sentences by Cordeiro and Dias [4]. The metric is given by:  
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Here count(ngram) gives the maximum number of n-grams in the 

shorter sentence and N is the maximum n-gram size taking 

values between 1 to 4. The brevity penalty originally used in 

BLEU metric to penalize shorter outputs can be omitted here as 

suggested in [6]. The adapted BLEU metric which is purely 

lexical in nature has been used as one of the features here.  

4.2.4 Dependency tree Edit distance 
A dependency tree is a syntactic representation of a sentence. 

The edit distance between dependency trees has been used to 

Corpus  

of 

Sentences 

 

Feature 

Extractor 

Neural 

Classifier 

Sentence 

Pairs 

Feature  

Vector 
  Decision 



©2010 International Journal of Computer Applications (0975 - 8887)  

Volume 1 – No. 29 

47 

 

detect text entailment by Kouylekov and Maginini [10]. The 

dependency trees for input sentences have been constructed using 

the Stanford Parser. The dependency tree edit distance has been 

calculated using the approach proposed by Zhang and Shasha 

(1989). The number of insertions, deletions and substitutions 

required for transforming one dependency tree to another was 

calculated by assigning equal costs for insertions, deletions and 

substitutions. The computed cost was normalized as in [10] to 

form one of the purely syntactic features for Paraphrase 

recognition.   

4.2.5 Parts of Speech enhanced Position Error Rate 

measure 

Position Error Rate(PER) is similar to Levenshtein distance 

except that the positions of the words in the sentences are 

ignored.  It has been determined that edits involving certain 

classes of words cost more than other classes and that enhancing 

the PER measure with Parts Of Speech(POS) information yields 

good results for detecting semantic similarity in [6]. Given the 

input texts T1, T2 the PER is calculated as: 
 PER(T1, T2) = max[diff(T1,T2), diff(T2,T1)] / |T2| 

where diff(T1,T2) is the number of words observed only in T1. 

The total edit distance can be split into components 

corresponding to each POS tag which reflects the contribution of 

words belonging to the respective POS tag to the overall edit 

distance. Two sets of features are used, one for matches and the 

other for non-matches. 

4.2.6 Negations 
Negations maybe present explicitly or implicitly through the 

usage of words such as „not‟, „no‟, or through the usage of 

antonyms respectively [12]. Explicit negations are handled using 

a binary negation attribute as in [12]. Implicit negations are more 

challenging. The presence of a word in T1 and its antonym in T2 

or vice-versa indicates a negation. In our work the number of 

negations detected has been used as one of the features. But 

when there is more than one such situation interpretation 

becomes difficult. In the same way the presence of both explicit 

and implicit negations together also leads to complications. 

These issues are proposed be handled in the future. 

4.3 Neural Network Classifier 
Various machine learning techniques such as Memory based 

Classifiers [12], Support Vector Machines [2, 11 and 15], 

Decision Trees [16] and k-Nearest Neighbour [11, 15] techniques 

have been utilized in paraphrase identification and text 

entailment detection. Some of the most successful systems for 

Paraphrase Recognition [6, 11] have employed Support Vector 

Machines. Support Vector Machines are found to have similar 

operational characteristics as Neural Networks [9]. Though 

Neural Networks are inferior to Support Vector machines in 

aspects such as intolerance to irrelevant attributes and over-

fitting they score better in the ability to perform incremental 

learning.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Architecture of a Back Propagation network 

Some of the most successful neural classifiers are multi-layer 

feed forward networks such as the Back Propagation Network 

[9]. Hence a Back Propagation Network has been employed for 

Paraphrase Recognition. 

4.3.1 Architecture 
A Back Propagation Network with three layers (Figure 2) has 

been utilized. The input layer has n number of neurons, where n 

is the number of extracted features. The neurons in the input 

layer are fully inter-connected with those in the hidden layer. A 

logistic activation function has been employed. Since Paraphrase 

recognition is a two class problem the output layer contains two 

neurons which perform a weighted sum of all hidden unit 

outputs.  

4.3.2 Training 
The network has been trained by presenting the sentence pairs 

from the training set of the MSRPC. The stages in training the 

neural network are: 

1. Initialization – The weights on the connections between 

the input-hidden layers and hidden-output layers are 

initialized. The learning rate and momentum values are 

also initialized. 

2. Presentation of training samples – The extracted feature 

vectors along with their class information is fed to the 

input layer for each pair of sentences. 

3. Forward computation – The input is propagated to the 

hidden layer via weighted connections. Each hidden layer 

neuron calculates the weighted sum of its inputs. The 

activation of the hidden layer neurons are passed on to the 

output layer where a similar computation is performed to 

determine the actual output. The difference between the 

target and actual output gives the error. 

4. Backward computation – The local gradient for each 

output layer neuron is computed in terms of its error and 

activation function value. This value is then propagated 

backwards to determine the gradient of the hidden layer 

neurons. Using the gradient values the weights are 

updated. 
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5. Iteration – The set of training samples are presented 

repeatedly in a random order and stages 3 and 4 are 

repeated until the error value becomes minimal. 

The learning rate and momentum values are gradually decreased 

as iterations progress in order to achieve stable learning. 

5.  DISCUSSION 
The Neural network based Paraphrase recognizer is currently 

under implementation. The performance of the system can be 

assessed by measuring the accuracy and precision and comparing 

it with the Paraphrase Recognizers of [6] and [11] which have 

reported an accuracy value of 75% and above. The system can be 

used in Question Answering systems and for plagiarism detection 

in document collections. Sentences present in the abstracts of 

document collections can be checked for the presence of 

paraphrases; these can a serve as an indicator for detecting 

plagiarised content.  
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