
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

43

Paraphrase Recognition using Neural

Network Classification
Anupriya Rajkumar

Assistant Professor, Department of PG CSE,
Dr.Mahalingam College of Engineering and

Technology, Pollachi, Tamil Nadu, India

Dr.A.Chitra

Professor, Department of CSE,
PSG College of Technology,

Coimbatore, Tamil Nadu, India

ABSTRACT

Paraphrasing refers to conveying the same content in several

ways. The successful recognition of paraphrases is crucial to

various natural language processing tasks such as Information

Extraction, Document Summarization, Question Answering etc.

Several techniques have been employed for paraphrase

recognition using lexical, syntactic and semantic features. Many

of these systems have been tested on the MicroSoft Research

Paraphrase Corpus. But the performance of these systems has

scope for further improvement. Since neural network

architectures model the human brain structure which excels at

natural language processing tasks, this paper presents a neural

network classifier for recognizing paraphrases. A combination of

lexical, syntactic and semantic features has been used to train a

Back Propagation network. The system can be utilized for

detecting similar sentences in applications such as Question

Answering and detection of plagiarized content.

Categories and Subject Descriptors

I.2.7 [Natural Language Processing]: Text Analysis; I.2.6

[Learning]: Connectionism and Neural nets

General Terms

Algorithms, Performance

Keywords

Paraphrase Recognition, Lexical, Syntactic, Semantic

features, Neural Network Recognizer, Back Propagation

Network

1. INTRODUCTION
Natural Language Processing (NLP) focuses on developing

computer systems that can analyze, understand and generate

natural human-languages. One of the major difficulties faced in

natural language processing is ambiguity where the same text has

several possible interpretations. Another equally challenging

aspect is that the same content can be conveyed in different

ways. This is termed as Paraphrasing. Paraphrases can occur at

the word level, phrase level, sentence level or discourse level. A

typical example of sentence level paraphrasing is the following

pair of statements “Tata acquires Jaguar” and “Jaguar sold to

Tata”.

Research problems related to paraphrasing are Paraphrase

generation, Paraphrase extraction and Paraphrase recognition.

Paraphrase generation which is a Natural language generation

problem is the process of generating alternative forms of the

input text. This finds application in areas such as document

summarization and machine translation. Paraphrase Extraction

involves the identification or discovery of paraphrases from a

large corpus and finds application in Information Extraction

tasks.

Paraphrase recognition is the task of recognizing the presence of

paraphrases in a given corpus. A variant of this is the text

entailment problem, which takes two sentences as input and

decides whether one of them can be inferred from the other.

Paraphrasing is considered as a case if bi-directional text

entailment. Paraphrase recognition is applicable in domains such

as Information Extraction, Plagiarism detection and Question

Answering. Experiments in the English language paraphrasing

domain have been carried out on various notable corpora such as

the Microsoft Research Paraphrase Corpora (MSRPC),

Recognizing Text Entailment Corpora and Machine Translation

resources. Similar experiments have also been carried out for

Spanish, Japanese and Chinese languages. Commonly used

scoring metrics for rating the performance of a system are

Precision, Recall and F-measure.

This paper presents the work carried out on paraphrase

recognition using a Neural network classifier. Though various

machine learning techniques such as Decision trees, Support

Vector Machines have been employed for the task no reported

work exists on Neural Network based paraphrase recognizers.

Section 2 of this paper gives an overview of features suitable for

Paraphrase recognition. Section 3 of the paper details several

techniques used in Paraphrase recognition. Section 4 presents the

work on the Neural Network based paraphrase recognizer.

2. FEATURES FOR RECOGNIZING

SEMANTIC EQUIVALENCE
This section briefly discusses the various features of text [1]

which help to recognize Paraphrases. The features can be

classified as Lexical, Syntactic and Semantic. Composite features

can be formed by combining two aspects such as the Lexical and

Semantic attributes.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

44

2.1 Lexical Features

These characterize the surface similarity or degree of word

overlap between the candidate sentences. A list of lexical

features used in paraphrase recognition is given below.
 Unigrams – measures the number of shared words

between the two sentences. Unigram precision and recall

are the number of shared words divided by the length of

the first sentence and second sentence respectively.

Lemmatized unigram precision and recall are calculated

after replacing words by their lemmas.

 Word error rate (WER) (Su et al., 1992) - a measure of

the number of edit operations required to transform one

sentence into another. It is also termed as Levenshtein

Edit distance.

 Position-independent word error rate (PER) (Tillmann et

al., 1997) - Similar to WER except that word order is not

taken into account.

 Bi-Lingual Evaluation Understudy (BLEU) precision

score (Papineni et al., 2001) - based on the geometric

mean of n-gram matches. After reversing the order of the

sentences, the BLEU recall score is calculated.

 Longest Common Substring and Subsequence – identify

the longest common sequence of consecutive and non-

consecutive words shared by the input sentence pair

respectively.

 Modified N-gram precision - a variation of the BLEU

measure which considers directional n-gram matches

between the sentence pair.

 N-gram overlap measures – N-grams are sub-sequences of

n-items from a given sequence. N-gram overlap measures

identify the number of shared n-grams between the

sentences.

 Skip-gram overlap measures – Skip-grams are non-

consecutive sequences of words using a skip distance k.

Skip-gram overlap measures are calculated by dividing

the number of common skip-grams by the number of word

combinations in the sentences.

 Exclusive longest common prefix N-gram overlap – This

measure extends the simple n-gram overlap measure. It

disregards all lower order subgrams of a maximal n-gram

when the number of overlapping n-grams is calculated.

2.2 Syntactic Features
These analyse the degree of structural similarity between the pair

of sentences. Some of the commonly used Syntactic features are:

 Dependency tree edit distance - A dependency tree is a

syntactic representation of a sentence. Dependency tree

edit distance measures the similarity of dependency trees.

 Dependency relation overlap features - A dependency

relation is a pair of words with a parent-child relationship

within the dependency tree. Dependency relation overlap

features measure the extent of overlap of dependency

relations between the two sentences.

 The morphological variants feature - identifies the Co-

occurrence of morphological variants in sentence pairs.

The words “compute” and “computing” are

morphological variants.

2.3 Semantic Features
Several Semantic similarity features exist based on the WordNet

database. These measures are termed as Knowledge based

measures as they rely on additional resources such as the

Wordnet dictionary. In the WordNet taxonomy, nodes represent

concepts or words and edges represent the relations between the

concepts. The Knowledge based measures [13] include:

 Leacock and Chodorow (1998) measure is calculated in

terms of the length of the shortest path between two

concepts using node counting and the maximum depth of the

taxonomy.

 Lesk (1986) measure is a function of overlap between

corresponding dictionary definitions.

 Wu and Palmer(1994) measure is based on the depth of two

given concepts in the WordNet taxonomy and the depth of

the Least Common Subsequence (LCS).

 Resnik (1995) measure assesses the information content of

the LCS of two concepts. Information content of a concept c,

is the probability of encountering it in a large corpus.

 Lin(1998) measure extends Resnik‟s measure by

considering the Information content of two concepts besides

the Information content of the LCS.

 Jiang and Conrath(1997) measure is assessed as the inverse

of the Information content of the two concepts and also their

LCS.

2.4 Features used in Paraphrase Recognition
Fernando and Stevenson (2008) have used semantic features to

measure the similarity between a pair of sentences [5]. The Jiang

and Conrath measure was found to be superior to other metrics.

The authors have suggested the incorporation of syntactic

features to improve performance. Zhang and Patrick (2006) have

used a variety of initial syntactic transformations along with

lexical features to decide whether the input sentences are

paraphrases [16]. Some of the syntactic transformations used

were replacement of number entities with generic tags and

passive-to-active voice change. The lexical features used were

Longest Common Substring and Edit Subsequence, Edit distance

and Modified N-gram precision. The results of the experiments

show that pure lexical matching could be improved by including

even preliminary syntactic transformations. Zhang et al have also

suggested the inclusion of Lexical Semantic features to further

improve performance.

Brockett and Dolan (2005) have used a combination of Lexical,

Syntactic, Semantic and Composite features to perform

paraphrase identification using Support Vector Machines [2].

Lexical features such as unigrams, word based edit distance and

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

45

edit distance calculated after converting the sentences to

alphabetized strings have been used. The syntactic morphological

variants feature and WordNet mapping features based on

Synonymy and Hypernymy have also been used. Edit distance

and the co-occurrence of morphological variants features were

found to be the most effective features.

Wan, Dras, Dale and Paris (2006) in their work on paraphrase

generation have employed a machine learning classifier to

identify paraphrases [15]. Both lexical, syntactic feature classes

have been used. The Lexical Features include N-gram Overlap

features based on Unigrams, Lemmatized Unigrams, BLEU and

lemmatized BLEU. Dependency relation overlap feature and

dependency tree edit distance are the syntactic measures that

have been used. Dependency based features clubbed with bi-

gram features were found to exhibit the best performance.

Kozareva and Montoyo (2006) have used purely lexical and

semantic features for Paraphrase identification [11]. The lexical

features used were the Longest Common Subsequence and Skip-

gram overlap. The semantic features include the Jiang and

Conrath noun/verb semantic similarity measure, proper name

matches and cardinal number coincidences. The lexical features

correctly determined the non-paraphrase pairs whereas the

semantic features were found to be good at identifying the

paraphrases. The authors have suggested that including syntactic

information will be beneficial.

Finch, Hwang and Sumita (2005) have extended basic lexical

measures such as WER, BLEU and PER to incorporate both

semantic and syntactic information [6]. The purely lexical edit

distance has been extended by considering the semantic distance

between words calculated using the Jiang and Conrath similarity

measure. The PER was also calculated for each Part Of

Speech(POS) separately. Extending the PER feature based on

POS information was found to improve the performance.

Rus, McCarthy, Lintean, McNamara and Graesser (2008) have

utilized Lexical, Syntactic and Semantic information for

paraphrase identification [14]. The significant aspects of this

work are the usage of syntactic information, enhancing the

lexical component using Synonymy relations from WordNet and

Negation handling using Antonymy relations. The authors have

suggested that weighting words with their specificity value will

help to improve the performance.

3. TECHNIQUES FOR PARAPHRASE

RECOGNITION
This section presents a study of various techniques used in

Paraphrase Recognition. Machine learning, graph based approach

and matrix similarity method have been utilized by various

researchers.

3.1 Machine Learning Techniques

Some of the commonly used machine learning techniques in

paraphrase identification are Decision trees, Support Vector

machines, Naïve Bayesian method and the K-Nearest Neighbour

technique. Zhang and Patrick (2006) have used a decision tree

based classifier to identify paraphrases after transforming the

input sentences using canonicalization rules [16]. The rules

employed were replacement of number entities with generic tags,

passive-to-active voice change and replacement of specific future

tense usages with more generic ones. Lexical features extracted

from the transformed sentences were fed to the decision tree

classifier. The authors have experimented on the Microsoft

Research Paraphrase Corpus (MSRPC) and have reported a

maximum accuracy of 71.9%.

Brockett and Dolan (2005) have employed Support Vector

Machines for Paraphrase Identification and Corpus Construction

[2]. The authors have reported precision and recall values of

86.76% and 86.39% respectively. Finch et al (2005) have also

employed a Support Vector Machine Classifier with radial basis

function kernels for identifying paraphrases based on machine

learning evaluation features and have reported an accuracy level

of 74.96% on the MSRPC [6].

Wan et al (2006) have employed various machine learning

classification techniques such as Naïve Bayesian Learner,

Decision tree based classifier, SVM and K-Nearest Neighbour

technique to rule out inconsistent paraphrases [15]. The best

performance was exhibited by Support Vector Machines on the

MSRPC. The maximum observed accuracy was 75% when a

combination of several lexical and syntactic features was used.

Kozareva and Montoyo (2006) have studied the behaviour of

three machine learning classifiers for identifying paraphrases,

namely SVMs, k-Nearest Neighbour technique and Maximum

Entropy method [11]. The SVM technique was found to perform

better than the other techniques. But the best performance has

been exhibited by a voting system which involved the three

machine learning classifiers. The system of [11] has registered

the highest accuracy level of 76.64% on the MSRPC.

3.2 Graph Based Approach
In [14] paraphrases have been recognized using a graph

subsumption approach. The input sentences are mapped to graph

structures and subsumption is detected by evaluating graph

isomorphism. Text A is entailed from B if and only if B

subsumes A. The entailment score for Text A with respect to

Text B and B with respect to A have been averaged to determine

whether A and B are paraphrases. In tests carried out on the

MSRPC an accuracy value of 70.61% has been observed.

3.3 Matrix Similarity Method
Fernando and Stevenson (2008) have utilized a matrix similarity

method for paraphrase detection [5]. In this work the semantic

similarity values between all pairs of words have been computed

using the knowledge based measures [13] and an accuracy of

74.1% has been reported.

4. NEURAL NETWORK BASED

PARAPHRASE RECOGNITION
Neural networks are computational models inspired by the

human nervous system and are one of the foremost machine

learning techniques. Neural architectures are suitable candidates

for language processing tasks because of their robustness to noisy

input and their similarity to cognitive thought processes. The task

of Paraphrase Recognition can be viewed as a binary

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

46

classification problem. Given a pair of sentences the Recognizer

must provide a response as to whether the sentences can be

considered as paraphrases or not. Automatic Paraphrase

Recognition can be tackled using Machine Learning algorithms.

Though Neural Networks have been employed for Paraphrase

Generation [Miikkulainen 1989], there are no known systems

employing neural networks for the task of Paraphrase

Recognition

This paper presents the work on Paraphrase Recognition using a

Neural Network Classifier. The architecture of the proposed

system as shown in Figure 1 consists of a Feature Extractor

module which identifies the various features from the sentence

pairs present in the training corpus. A feature vector is

constructed and passed on to the Neural Network Classifier.

Once the network is trained its performance can be evaluated on

test data using standard measures such as precision, recall and F-

measure.

Figure 1 Paraphrase Recognition using a Neural Classifier

4.1 Experimental Data
Experiments have been carried out using the Microsoft Research

Paraphrase Corpora (MSRPC). This corpora was constructed

from a collection of Internet news articles and is partitioned into

the training set and test set. The sentence pairs in the corpora

were labelled as Positive and Negative cases of Paraphrasing by

Multiple human annotators. Out of the total collection, 67% of

paraphrases were found to be present. The training set consists of

4076 sentence pairs and the test set has 1726 sentence pairs. Of

these the number of paraphrases in the training set and test set

are 2753 and 1147 respectively [6].

4.2 Feature Extraction
The Feature Extraction module is responsible for extracting

various features from the input pair of sentences. Recognition of

semantic equivalence has been found to require processing at the

lexical level, syntactic level and the sentence semantic level. In

this work a combination of purely lexical, syntactic, lexical-

semantic and lexical-syntactic features have been used for

paraphrase recognition as described below.

4.2.1 String Edit distance extended to permit lexical

Variations
The Levenshtein distance also known as Edit distance or Word

Error Rate (WER) (Su et al. 1992) is a purely lexical measure

that computes the number of insertions, deletions and

substitutions required to transform one string into another. With

respect to processing input sentences S1, S2 if the words in the

positions i of S1 and j of S2 are the same the cost is 0 else it is 1.

Usually a dynamic programming approach is used to compute the

edit distance. A disadvantage of the Edit distance measure is that

sentences with high lexical alternations or different syntactic

structures have a high edit distance and are hence not considered

to be paraphrases even though they may actually be paraphrases.

In an attempt to overcome this, modified edit distance has been

used in [6], which instead of looking for exact matches between a

pair of words uses semantic similarity measures to decide

whether the words are similar. For determining whether a pair of

words was semantically similar the Jiang and Conrath measure

[8] was used in [6].

Dist(wordi, wordj) = IC(wordi) + IC(wordi) – 2 *

IC(LSuper(wordi,wordj))

Here IC(word1) = -log P(word1) where P(word1) is the

probability of occurrence of word1 in the corpus and

LSuper(wordi, wordj) denotes the lowest super-ordinate of both

the words in the WordNet taxonomy. This measure has been

shown to exhibit superior performance in similarity assessment

[5]. Hence in this work the modified string edit distance

computed using the Jiang and Conrath measure which combines

both lexical and semantic aspects has been used.

4.2.2 Skip-grams
An n-gram is a sub-sequence of n-items from a given sequence.

Similar sentences are expected to have a greater percentage of

shared n-grams[7]. But simple n-grams tend to overlook non-

contiguous word associations [3]. Skip grams detect non-

contiguous word associations along with the contiguous word

associations identified by n-grams. Skip-grams are usually

formed using a skip distance k and allow a total of k or less

skips. It is a purely lexical measure. A commonly used value for

k is 4. To assess the degree of similarity between two sentences

the number of common skip-grams between them has been used.

4.2.3 BLEU
The BiLingual Evaluation Understudy (BLEU) metric was

proposed by Papineni et. al as a method for automatic evaluation

of machine translation. It is based on the concept of a weighted

average of similar length phrase matches (n-grams). The BLEU

metric has been adapted for assessing similarity between

sentences by Cordeiro and Dias [4]. The metric is given by:

N

n
nC

NadaptedBLEU

1

log
1

exp

where

ngram

match
n

ngramcount

ngramcount
C

)(

)(

Here count(ngram) gives the maximum number of n-grams in the

shorter sentence and N is the maximum n-gram size taking

values between 1 to 4. The brevity penalty originally used in

BLEU metric to penalize shorter outputs can be omitted here as

suggested in [6]. The adapted BLEU metric which is purely

lexical in nature has been used as one of the features here.

4.2.4 Dependency tree Edit distance
A dependency tree is a syntactic representation of a sentence.

The edit distance between dependency trees has been used to

Corpus

of

Sentences

Feature

Extractor

Neural

Classifier

Sentence

Pairs

Feature

Vector
 Decision

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

47

detect text entailment by Kouylekov and Maginini [10]. The

dependency trees for input sentences have been constructed using

the Stanford Parser. The dependency tree edit distance has been

calculated using the approach proposed by Zhang and Shasha

(1989). The number of insertions, deletions and substitutions

required for transforming one dependency tree to another was

calculated by assigning equal costs for insertions, deletions and

substitutions. The computed cost was normalized as in [10] to

form one of the purely syntactic features for Paraphrase

recognition.

4.2.5 Parts of Speech enhanced Position Error Rate

measure

Position Error Rate(PER) is similar to Levenshtein distance

except that the positions of the words in the sentences are

ignored. It has been determined that edits involving certain

classes of words cost more than other classes and that enhancing

the PER measure with Parts Of Speech(POS) information yields

good results for detecting semantic similarity in [6]. Given the

input texts T1, T2 the PER is calculated as:
 PER(T1, T2) = max[diff(T1,T2), diff(T2,T1)] / |T2|

where diff(T1,T2) is the number of words observed only in T1.

The total edit distance can be split into components

corresponding to each POS tag which reflects the contribution of

words belonging to the respective POS tag to the overall edit

distance. Two sets of features are used, one for matches and the

other for non-matches.

4.2.6 Negations
Negations maybe present explicitly or implicitly through the

usage of words such as „not‟, „no‟, or through the usage of

antonyms respectively [12]. Explicit negations are handled using

a binary negation attribute as in [12]. Implicit negations are more

challenging. The presence of a word in T1 and its antonym in T2

or vice-versa indicates a negation. In our work the number of

negations detected has been used as one of the features. But

when there is more than one such situation interpretation

becomes difficult. In the same way the presence of both explicit

and implicit negations together also leads to complications.

These issues are proposed be handled in the future.

4.3 Neural Network Classifier
Various machine learning techniques such as Memory based

Classifiers [12], Support Vector Machines [2, 11 and 15],

Decision Trees [16] and k-Nearest Neighbour [11, 15] techniques

have been utilized in paraphrase identification and text

entailment detection. Some of the most successful systems for

Paraphrase Recognition [6, 11] have employed Support Vector

Machines. Support Vector Machines are found to have similar

operational characteristics as Neural Networks [9]. Though

Neural Networks are inferior to Support Vector machines in

aspects such as intolerance to irrelevant attributes and over-

fitting they score better in the ability to perform incremental

learning.

Figure 2 Architecture of a Back Propagation network

Some of the most successful neural classifiers are multi-layer

feed forward networks such as the Back Propagation Network

[9]. Hence a Back Propagation Network has been employed for

Paraphrase Recognition.

4.3.1 Architecture
A Back Propagation Network with three layers (Figure 2) has

been utilized. The input layer has n number of neurons, where n

is the number of extracted features. The neurons in the input

layer are fully inter-connected with those in the hidden layer. A

logistic activation function has been employed. Since Paraphrase

recognition is a two class problem the output layer contains two

neurons which perform a weighted sum of all hidden unit

outputs.

4.3.2 Training
The network has been trained by presenting the sentence pairs

from the training set of the MSRPC. The stages in training the

neural network are:

1. Initialization – The weights on the connections between

the input-hidden layers and hidden-output layers are

initialized. The learning rate and momentum values are

also initialized.

2. Presentation of training samples – The extracted feature

vectors along with their class information is fed to the

input layer for each pair of sentences.

3. Forward computation – The input is propagated to the

hidden layer via weighted connections. Each hidden layer

neuron calculates the weighted sum of its inputs. The

activation of the hidden layer neurons are passed on to the

output layer where a similar computation is performed to

determine the actual output. The difference between the

target and actual output gives the error.

4. Backward computation – The local gradient for each

output layer neuron is computed in terms of its error and

activation function value. This value is then propagated

backwards to determine the gradient of the hidden layer

neurons. Using the gradient values the weights are

updated.

.

.

.

.

.

.

.

Input

layer
Hidden

layer

Output

layer

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 29

48

5. Iteration – The set of training samples are presented

repeatedly in a random order and stages 3 and 4 are

repeated until the error value becomes minimal.

The learning rate and momentum values are gradually decreased

as iterations progress in order to achieve stable learning.

5. DISCUSSION
The Neural network based Paraphrase recognizer is currently

under implementation. The performance of the system can be

assessed by measuring the accuracy and precision and comparing

it with the Paraphrase Recognizers of [6] and [11] which have

reported an accuracy value of 75% and above. The system can be

used in Question Answering systems and for plagiarism detection

in document collections. Sentences present in the abstracts of

document collections can be checked for the presence of

paraphrases; these can a serve as an indicator for detecting

plagiarised content.

6. REFERENCES
[1] Anupriya, R. and Chitra, A. 2009. “Analysis of Paraphrase

Recognition Techniques” CSI Communications, Vol.33,

Issue 9, 12-14.

[2] Brockett, C. and Dolan, B. 2005. Support Vector Machines

for Paraphrase Identification and Corpus Construction. In

Proceedings of the 3rd International Workshop on

Paraphrasing, 1-8.

[3] Cheng, W., Greaves, C. and Warren, M. 2006. “From n-

gram to Skip-gram to Conc-gram” International Journal of

Corpus Linguistics, Vol. 11, Issue 4, 411-433.

[4] Cordeiro, J., Dias, G. and Brazdil, P. 2007. “New

Functions for Unsupervised Asymmetrical Paraphrase

Detection,” Journal of Software, vol. 2, Issue 4, 12-23.

[5] Fernando, S. and Stevenson, M. 2008. A Semantic

Similarity Approach to Paraphrase Detection. In

Proceedings of the Computational Linguistics UK (CLUK

2008) 11th Annual Research Colloquium.

[6] Finch, A., Hwang, Y. and Sumita, E. 2005. Using Machine

Translation Evaluation Techniques to Determine Sentence

level Semantic Equivalence. In Proceedings of the Third

International Workshop on Paraphrasing, 17-24.

[7] Guthrie, D., Allison, B., Liu, W., Guthrie, L. and Wilks, Y.

2005. A Closer look at Skip-gram modeling. In

Proceedings of the Fifth International Conference on

Language Resources and Evaluation, 1222-1225.

[8] Jiang, J. and Conrath, D.W. 1997. Semantic Similarity

Based on Corpus Statistics and Lexical Taxonomy. In

Proceedings of the International Conference on Research in

Computational Linguistics.

[9] Kotsiantis, S. 2007. “Supervised Machine Learning: A

Review of Classification Techniques,” Informatica Journal,

vol. 31, 249-268.

[10] Kouylekov, M. and Magnini, B. 2005. Recognizing

Textual Entailment with Tree Edit Distance Algorithms.

In

Proceedings of the First PASCAL Challenges Workshop on

Recognising Textual Entailment, 17–20.

[11] Kozareva, Z. and Montoyo, A. 2006. Paraphrase

Identification on the basis of Supervised Machine Learning

Techniques. In Proceedings of Advances in Natural

Language Processing: 5th International Conference on NLP,

524-533.

[12] Kozareva, Z. and Montoyo, A. 2006. The Role and

Resolution of Textual Entailment in Natural Language

Processing Applications. In Proceedings of the 11th

International Conference on Applications of Natural

Language to Information Systems, 186-196.

[13] Mihalcea, R., Corley, C. and Strapparava, C. 2006. Corpus

based and Knowledge-based Measures of Text Semantic

Similarity. In Proceedings of the 21st Conference of

American Association for Artificial Intelligence, 775-780.

[14] Rus, V., McCarthy, P. M., Lintean, C., McNamara, D.S.

and Graesser, A.C. 2008. Paraphrase Identification with

Lexico-Syntactic Graph Subsumption. In Proceedings of the

Twenty-First International Florida Artificial Intelligence

Research Society Conference, 201-206.

[15] Wan, S., Dras, M., Dale, R. and Paris, C. 2006. Using

Dependency-based Features to take the "Para-farce" out of

Paraphrase. In Proceedings of the Australasian Language

Technology Workshop, 131-138.

[16] Zhang, Y. and Patrick, J. 2005. Paraphrase Identification by

Text Canonicalization. In Proceedings of the Australasian

Language Technology Workshop, 160–166.

