
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

8

DU-Regs: Online Dynamic Approach to Visualize Impact

Analysis for Regression Testing
Chetna Gupta

Jaypee University of Information
Technology

Waknaghat, District Solan
Himachal Pradesh, India

Yogesh Singh
University School of Information

Technology
Guru Gobind Singh Indraprastha

University
Kashmere gate, Delhi, India

 Maneesha Srivastav
Jaypee University of Information

Technology
Waknaghat, District Solan
Himachal Pradesh, India

Durg Singh Chauhan
Uttarakhand Technical Universirty

Dehradun, India

ABSTRACT

Software evolution is an ongoing process carried out by software

maintainer’s in order to meet the increasing demand, pressure

and requirements for extending base applications for adding new

functionalities, for fixing bugs or for adapting software to the

changing environments. As a result, it establishes the need for

estimating and determining the impact of changes on the overall

software system. Impact Analysis is a way to estimate the impact

of such changes either before or after the change is made. In the

last few decades many such techniques and tools (both static and

dynamic) have been proposed. In this paper we propose a new

online dynamic impact analysis technique called Definition

Usage-Regression Test Selection (DU-Regs), which collects

impact traces completely online i.e. during execution. It works at

statement level rather than on method level to capture more

precise impact sets and at the same time, provides the support for

impact visualization for regression testing.

Categories and Subject Descriptors

K.6.3 [Software Management]: Software Maintenance

General Terms

Verification

Keywords

Dynamic impact analysis, regression testing, software

maintenance.

1. INTRODUCTION
Software systems undergo many changes because of changing

requirements and pressure for extending base applications. More

than 50% of the total maintenance cost of the software lies in the

rework i.e. in changing the software [11, 4]. Making changes to

the software without understanding and knowledge of the

software component can produce disastrous effects [14] and can

lead to degraded software. Impact analysis is the set of such

techniques which are used to calculate or estimate the effects of

the change on overall software system and addresses these

problems (in terms of estimating the effect of the changes) [13, 8,

15, 12]. Impact Analysis can be applied before or after the

changes are made. If done in a proactive manner i.e. before the

changes are made it can be helpful in predicting the effects of the

proposed changes in terms of the affect on the overall system and

its corresponding cost and at the same time provides an option to

the maintainer to select among various alternatives. On the other

hand if applied after modifications, it can help in reducing the

risks associated with releasing changed software by alerting

engineers to potentially affected program components.

 In this paper we propose a new online impact analysis

technique, called DU-Regs, which is capable of collecting

dynamic impact sets online. It is an online tool that captures

traces while execution. This technique works at the statement

level rather than on method level to produce more precise impact

sets. The tool also provides the support to visualize impact sets

through graphical interface.

2. RECENT WORK
Dynamic impact analysis techniques [7, 5, 2, 16, 1, 9] are based

on dynamic program behaviors gathered for a specific set of

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

9

executions (i.e. data obtained from executing a program) to

perform analysis. PathImpact [7] works at the method level,

based on whole path profiling [6]. It produces traces of procedure

names, function returns and program exit in the order in which

they occur in multiple executions. EvolveImpact [5] is the

extension of the PathImpact [7] that allows PathImpact to collect

data incrementally. CoverageImpact [2] uses light weight

instrumentation and collect coverage information of methods per

executions. It also works at the method level, but uses coverage,

rather than trace, information to compute impact sets. CollectEA

[16] is based on Execute After (EA) relation for efficiently

collecting and analyzing the collected information dynamically. It

identifies all program entities that are executed after e, where e

is the set of executions for some procedure p in the considered

program execution. It finds all those methods that are executed

after the changed methods. A comparison of [7] and [2] is given

in [1]. SVD-based impact analysis [9] determines the impact by

analyzing software change records through singular value

decomposition thereby generating clusters of files that

historically tend to address faults and failures found in the code

base.

 On the other hand if applied online, it can calculate the impact

sets concurrently with program execution [10].Online dynamic

impact analysis has the same goal as dynamic impact analysis,

but online impact analysis is performed concurrently with

program execution rather than calculating the impact sets from

executing the program. Dynamic impact analysis does not require

access to the source code or the linking process. Instrumentation

and calculation of dynamic impact analysis cause overhead in

both time and space. The result of the studies [3] indicates that

performing impact analysis online can be more scalable than the

dynamic counterparts.

3. OUR APPROACH
Our approach is summarized in Figure 1. The main components

(shown in bold dotted line) along with their implementation

issues are explained below:

 Variable Trace Gatherer (VTG): to gather traces of

every variable statement by statement on execution i.e.

at run time.

 Analyzer: to read the data gathered by variable trace

gatherer for classification. The classification is based

on the definition and usage information of the variables

used in the program. The defined classification is as

follows:

o d-def: definite definition

o d-use: definite usage

o p-def: predicate definition

o p-use: predicate usage

 Database: stores the dynamic traces of the variables at

run time for the above given classification

 Graphical Interface: reads the database to generate

the affected statements either directly (on the basis of

d-def and d-use) or indirectly (on the basis of p-def and

p-use). The aim of using graphical interface is to

provide insight and understanding to pin point

irregularities.

As the model is completely based on online collection of dynamic

traces, no access to the source is required for executing the

program. Dynamic traces will be stored in database during run

time. To permit visualization, the user can interact with the

graphical interface, which in turn reads database.

Figure 1. Model for DU-Regs.

.

Generates

Compiles

Database

Reads

Reads

Classifies

Interacts

Executes

Complier

Graphical Interface

Source Code

Variable Trace

Gatherer

Analyzer

Reads

Generates

Executable

Code

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

10

3.1 Example
To validate the presented techniques and to assess the usefulness

of using defination and usage information of a variable for

impact analysis and regression testing, we performed a set of

empirical studies. We explain the whole process of collecting the

traces with the help of following example. Consider an example

program in Figure 2. Suppose the change has occurred in

statement 2 where, sum2 =0; is written as sum2 = 5; the

corresponding control flow graph is shown in Figure 3.

3.1.1 Data collected by Variable Trace Gatherer
It will collect variable information as they appear in the program

along with their statement numbers during run time. Table 1

provides the data collected by VTG.

 Table 1. Data collected by VTG

Variables Statement where they appear

sum 1 1, 6, 10, 11

sum 2 2, 7, 11

i 3, 4

j 3, 5, 8, 9, 10

p 6, 7, 8

3.1.2 Data collected by Analyzer
It will read variable trace gatherer and will store dynamic traces

of each variable in databse after classifing it into above

mentioned four catergories. Table 2 provides the classification

results.

Table 2. Data collected by Analyzer

Variable d-def d-use p-def p-use

sum 1 1, 10 6, 10, 11 8 --

sum 2 2 7, 11 8 --

i 3 4, 10 -- --

j 3, 9 5, 8, 10 -- --

p 6, 7 -- -- --

3.1.3 Graphic Interface
It will read the database to generate dynamic impact set for

analysis of software maintainers to underatnd and estimate the

impact of change on overall system. Table 3 provides the results

of suspicious statements where the change has propagated.

Hence the results obtained by DU-Regs can be can be used for

selective regression testing.

main () {

int *p;

int j, sum1, sum2;

1. sum1 =0;

2. sum2=0;

3. read i, j;

4. while (i<10) {

5. if (j<0) {

6. p =&sum1;

} else {

7. p = &sum2;

}

8. *p = add(j,*p);

9. read j;

}

10. sum1 = add(j, sum1);

11. print sum1, sum2;

}

Figure 2. Example Program.

.

Figure 3. Control Flow Graph.

.

d-use = sum1,

sum2}

d-def = {sum1}

d-def = {sum2}

d-def = {i, j}

d-use = {i}

d-def = {j}

d-use = {j}

d-def = {p}

d-use

={sum2}

d-use = {j}

p-def = {sum1 , sum2}

p-use = {sum1, sum2}

d-use =

{j,sum1}

d-def = {sum1}

d-def ={p}

d-use ={sum1}

1

2

3

4

5

6 7

8

9

11

10

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

11

Table 3. Impact of change on overall system

Changed

variable

Set of statements where the change has

propogated

sum 2 2, 7, 8, 11

4. CONCLUSION
In this paper we have presented our new technique for

calculating dynamic impact sets online at statement level. The

technique classifies a data dependence based on the type of

definition and usage which helps in analyzing the effect of the

change on the overall system. This approach can prove to be

helpful in reducing software maintainer’s tasks. As the approach

is based on analyzing the variables at statement level hence it

can produce more precise results. We are currently implementing

the tool. So far, variable trace gatherer and database has been

completed. Now we are looking to implement the analyzer and

graphical interface.

5. REFERENCES
[1] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M.

J. Harrold. 2004. An Empirical Comparison of Dynamic

Impact Analysis Algorithms. In Proceedings of the 26th

International Conference on Software Engineering

(Scotland, UK, May 23-38, 2004). (ICSE 2004), 491-500.

[2] A. Orso, T. Apiwattanapong, and M. J. Harrold. 2003.

Leveraging Field Data for Impact Analysis and Regression

Testing. In Proceedings of ACM Symposium on Foundations

of Software Engineering (Helsinki, Finland, September 01-

05, 2003). (SIGSOFT 2003), 128-137. DOI =

http://doi.acm.org/10.1145/566172.566182

[3] B. Korel and J. Laski. Dynamic Slicing in Computer

Programs. 1990. Journal of Systems Software, 13(3)

(November 1990), 187–195.

[4] Glenford J. Myres. 1979. Art of Software Testing. John

Wiley & Sons, New York, ISBN 0471043281

[5] J. Law and G. Rothermel. 2003. Incremental Dynamic

Impact Analysis for Evolving Software Systems. In

Proceedings of 14th IEEE International Symposium on

Software Reliability Engineering. (Denver, Colorado, Nov

17-20, 2003). (ISSRE 2003).

[6] J. Larus. 1999. Whole Program Paths. In ACM Proceedings

of 1999 Conference on Programming Language Design and

Implementation (Atlanta, GA, May 01-04, 1999).

(SIGPLAN PLDI 1999), 1–11. DOI =

http://doi.acm.org/10.1145/301631.301678

[7] J. Law and G. Rothermel. 2003. Whole Program Path-Based

Dynamic Impact Analysis. In Proceedings of the

International Conference on Software Engineering (Hilton

Portland, Oregon, USA, May 3-10, 2003). (ICSE 2003),

308-318

[8] J. P. Loyall, S. A. Mathisen, and C. P. Satterthwaite. 1997.

Impact Analysis and Change Management for Avionics

Software. In Proceedings of IEEE National Aerospace and

Electronics Conference, Part 2 (Dayton, OH, July 1997).

740–747

[9] Mark Sherriff and Laurie Williams 2008. Empirical

Software Change Impact Analysis using Singular Value

Decomposition. In proceedings of 1st IEEE International

Conference on Software Testing, Verification, and

Validation (Lillehammer, Norway, April 09-11, 2008).

(ICST 2008), 268-277.

[10] M. Kamkar. 1995. An Overview and Comparative

Classification of Program Slicing Techniques. Journal of

Systems Software, 31(3) (December 1995), 197–214.

[11] M. Lee, A. J. Offutt, and R.T. Alexander 2000. Algorithmic

Analysis of the Impacts of Changes to Object-oriented

Software. In Proceedings of the Technology of Object-

Oriented Languages and Systems (July 30-August 03,

2000). (TOOLS 34'00), 61

[12] R. J. Turver and M. Munro. 1994. Early Impact Analysis

Technique for Software Maintenance. Journal of Software

Maintenance: Research and Practice, vol. 6 (1), (Jan 1994),

35–52.

[13] R. S. Arnold and S. A. Bohner 1993. Impact analysis –

Towards a Framework for Comparison. In Proceedings of

IEEE International Conference on Software Maintenance

(Montreal, Que, Can, Sept. 1993). (ICSM 1993), 292– 301.

[14] S. Bohner and R. Arnold. 1996. Software Change Impact

Analysis. IEEE Computer Society Press (Los Alamitos, CA,

USA 1996), 376

[15] S. L. Pfleeger. 1998. Software Engineering: Theory and

Practice. Prentice Hall, Englewood Cliffs, NJ

[16] Taweesup Apiwattanapong, A. Orso and Mary Jean Harrold.

2005. Efficient and Precise Dynamic Impact Analysis Using

Execute-After Sequences. In ACM International Conference

on Software Engineering (St. Louis, Missouri, USA, May

15-21, 2005). (ICSE 2005). DOI =

 http://doi.acm.org/10.1145/1062455.1062534

http://doi.acm.org/10.1145/566172.566182
http://doi.acm.org/10.1145/301631.301678
http://doi.acm.org/10.1145/1062455.1062534
http://doi.acm.org/10.1145/1062455.1062534

