
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

82

Clustered Checkpointing and Partial Rollbacks for

Reducing Conflict Costs in STMs
Monika Gupta

IBM India Research Lab
New Delhi, India

Rudrapatna K Shyamasundar
Tata Institute of Fundamental

Research, India

Shivali Agarwal
IBM India Research Lab

New Delhi, India

ABSTRACT

A Software Transactional Memory is a concurrency control

mechanism that executes multiple concurrent, optimistic, lock-

free, atomic transactions, thus alleviating many problems

associated with conventional mutual exclusion primitives such as

monitors and locks. With the advent of massive multi-cores,

more transactions can be initiated concurrently, however

resulting in an increase in the percentage of conflicting

transactions. Each time a transaction conflicts, it imposes a

significant cost on the system, originating from the need to abort

and redo all the operations, including the costly shared memory

read operations, thus making the overall system significantly

heavy and impractical. We present an algorithm, Clustered

Checkpointing and Partial Rollback (CCPR), for reducing the

conflict costs of transactions in the face of increasing conflicts.

The algorithm is based on intelligent checkpointing of

transactions as they proceed, and, in case of conflict, rolling them

back to a safe, consistent, intermediate checkpoint, thus reducing

conflict costs. The intelligence of the algorithm lies in the fact

that as conflicts decrease, the checkpointing costs go low,

however, when conflicts increase, the checkpointing costs

increase but are still pretty much less than the amount of savings

obtained by the partial rollback of the conflicting transactions.

We simulated several applications in the CCPR framework and

found that it can result in as good as 17% reduction in the

conflict costs originating from the need to redo all the shared

memory read operations.

General Terms

Concurrent Programming, Software Transactional Memory

Keywords

Software Transactional Memory, Clustered Checkpointing,

Dynamic Clustering, Probabilistic Clustering, Partial Rollback

1. INTRODUCTION
Recent advances in multi-core architectures demand efficient

synchronization mechanisms to achieve performance scaling.

The conventional primitives such as locks if coarse grained suffer

from problems of scalability, while fine grained locks become

difficult to program as it becomes difficult to visualize deadlocks

due to interleaving executions. With multiprocessing becoming

ubiquitous and concurrent applications a norm, various solutions

for easy-to-program, scalable and efficient synchronization

mechanisms are being sought. There has been a growing

consensus that transactions can provide a simple, powerful

mechanism for synchronization over multiple objects. Sequences

of object references can be grouped to form transactions, and

each such transaction can be treated as an atomic execution unit.

Programmers can focus on the atomicity requirements rather than

the implementation details of synchronization. Infact, some of the

futuristic parallel languages like X10, being targeted for high

performance and productivity have already incorporated the

notion of atomic computation as a language construct. These

explorations have lead to the abstraction of Transactional

Memory (TM) [1] as a realization for such atomic units of

computation.

A TM is a concurrency control mechanism that executes multiple

concurrent, optimistic, lock-free, atomic transactions, thus

alleviating many problems associated with explicit locking.

Shared memory acts as a large database which is shared by

multiple isolated transactions / execution threads. TM guarantees

atomicity and isolation of the sequential code executed within a

transaction by appropriately committing/aborting them. A TM

thus allows programmers to focus on the atomicity requirements

rather than the implementation details of the synchronization.

TMs can be classified as either STMs (Software TM) or HTMs

(Hardware TM), based on whether the transactional semantics

are implemented in software or hardware. We consider in this

paper a STM system, and propose an algorithm for its

realization.

Several aspects have been used to classify existing STM

algorithms, some of which are:

 When does a transaction actually update the desired

shared objects? - Eager versioning STMs are typically lock-

based blocking implementations, where transactions modify

data in-place by using logs. Lazy versioning STMs are non-

blocking implementations, where transactions usually execute

by making a private working copy of the shared objects and

when completed, swap their working copy with the global copy

thus assuring that both committing and aborting are light-

weight operations.

 When does a transaction detect a conflict with another

transaction in the system? –While in Eager Conflict

Detecting STMs, conflicts are detected as transactions

proceed, in Lazy Conflict Detecting STMs, conflicts are

detected at commit time.

 How do transactions commit themselves? - A commit

operation in a STM is either a lock-free operation based on

indirection and compare-and-swap (CAS), or a locking

operation. A locking operation uses either Encounter-Time

Locking or Commit-Time Locking. In encounter time locking,

memory writes are done by first temporarily acquiring a lock

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

83

for a given location, writing the value directly, and then

logging it in the undo log. Commit-time locking uses two-

phase locking scheme, i.e., it locks all memory locations

during the first phase (called acquire phase) and updates and

unlocks them in the second phase (called commit phase).

Different implementations of STMs [2] make tradeoffs that

impact both performance and programmability. Calin et. al. in

[3], explored the performance of a two STM algorithms and

observed that the overall performance of TM was significantly

worse at low levels of parallelism. In this paper, we propose an

algorithmic extension to one of the STM algorithms they

explored, i.e., the global version number (gv) algorithm. We

show through simulation results that the new algorithm we

propose is efficient than the original one, especially when the

percentage of conflicting transactions is moderate to high.

The rest of the paper is organized as follows. We discuss the

CCPR algorithm in Section 2. In section 3, we present CCPR’s

simulation results. Section 4 discusses the related work, and we

wrap up in section 5 with conclusions and future work.

2. THE CCPR ALGORITHM

2.1 The Baseline - global version number (gv)

algorithm
Calin et. al. [3] studied the performance of two STM algorithms

– one that fully validates (fv) the read set after each transactional

read, and the other that uses a global version number (gv) to

avoid the full validation. While the fv algorithm provides more

concurrency at a higher price, the gv algorithm is deemed as one

of the best tradeoffs for STM implementations. We assume the

gv algorithm as our baseline algorithm.

Figure 1 is taken from [3]; it details out which operations in a

STM cause maximum overheads. As is clear from the figure, the

overheads of the transactional reads dominate other operations

because of the relatively higher frequency of these operations.

Although the gv algorithm does reduce the read overheads as

compared to the fv algorithm, still the read operations contribute

significantly to the overall overheads, and this worsens when the

transactions conflict with each other, and upon abort start afresh

from the beginning. Having discussed all this, we next discuss

the CCPR algorithm and illustrate how the algorithm reduces the

shared read overheads without incurring too much of overheads

itself.

2.2 The CCPR algorithm
The CCPR algorithm extends the gv algorithm by appropriately

checkpointing the transactions as they execute in their local

workspace, and in case of a conflict, uses the checkpoint logs to

identify a safe, consistent, intermediate checkpoint to partially

rollback to. For checkpointing purposes, the algorithm abstracts

the shared memory as a set of shared objects which in its finest

form can be a simple data type such as an integer, float, character

etc., or, it can be coarse as a user-defined data type, e.g. a link-

list node. The CCPR algorithm along with its data structures and

operations is presented below.

Figure 1. Percentage of time spent in different STM

operations

2.2.1 Data Structures
Each shared object in the shared memory is augmented with a 4-

bit conflict probability value which increases as and when the

shared object is involved in a conflict, and is reset to zero when

no transactions are reading it. Transactions create new

checkpoints for only those shared objects which have a good

probability of ending up in a conflict; otherwise the new

checkpoint is clustered with the previous checkpoint, thus

reducing overheads.

Figure 2. Transaction’s workspace

A transaction’s workspace is shown in figure 2. Each transaction

maintains a local data block, a shared object store, and a

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

84

checkpoint log. Whereas a local data block stores the current

values of all the local/shared objects being currently used by the

transaction, the shared object store stores the initial values of

only the shared objects as originally read from the shared

memory.

Shared Object Store – Each entry in the shared object store

contains the following: (1) the shared object, (2) its initial value

as read from the shared memory, and, (3) a sync-bit indicating

whether or not this value is in-sync with the object's current

value in the shared memory.

Values of shared objects read from shared memory are updated

in the shared object store (and also in the local data block) and

the corresponding sync-bit is set to “1” to indicate an in-sync

value. As a transaction conflicts, some of these shared objects

become victims of conflict and their values go out-of-sync (a “0”

sync-bit) with the corresponding values in the shared memory, at

which point the transaction needs to re-start from a suitable

checkpoint and re-read these objects from the shared memory.

Local Data Block - Each entry in the local data block contains

the following: (1) the local/shared object, (2) its current value in

the transaction, (3) a dirty-bit indicating whether or not the

object's value has been updated since the last checkpoint, and,

(4) a pointer to the object's undo-stack. Each local/shared object

in the transaction maintains an undo-stack to trace the different

values assigned to it as the transaction proceeds.

As a transaction proceeds, various read/write requests are served

as follows:

 All shared object read requests are directed to the local data

block, if not served there, are redirected to the shared object

store, and if not served there also, are redirected to the shared

memory and subsequently cloned in the shared object store

and local data block for further read/write requests.

 All local object read requests get served through the local data

block.

 All writes are done in the local data block and the

corresponding dirty-bits for the objects being written are set.

Checkpoint Log - A checkpoint log is essentially a variant of

an undo-log, and is used for partially rolling back transactions.

Each entry in the checkpoint log contains the following: (1) a list

of shared objects whose read initiated the log entry, (2) a

program location from where the transaction should proceed after

a rollback to this checkpoint, and, (3) the current snapshot, called

continuation, of the transaction's local data block; it is essentially

a list of various undo-stack pointers.

2.2.2 Transaction Checkpointing
The default checkpoint – We associate a default checkpoint

with every transaction in the system. Partial rollback to a default

checkpoint equates to a transactional abort and full restart. Note

that there is no cost associated with the default checkpoint

creation.

What are the candidate checkpoints - In CCPR, we consider

the first read operations on the shared objects as candidate

operations for checkpoints. The reasoning behind this proposition

is as follows: Each transaction in the system speculatively

executes using a local data block. The actual shared objects are

lazily updated during the transaction's commit operation. While a

transaction is locally executing, some other transactions may

commit, and hence, some or all of the shared objects that were

read by this transaction may get updated. In such a case, this, not

yet completed transaction, that had read the old values of the

updated shared objects, becomes inconsistent, and needs to

rollback to the first point, where the value of any of these shared

objects were first read from the shared memory. Thus, the first

read operations on the shared objects are candidate checkpoints

in a transaction.

When to create a new checkpoint - Upon encountering a

candidate checkpoint, a transaction needs to decide whether or

not it actually needs to create a fresh checkpoint at the current

operation. This decision is based upon the following factors:

 An executing transaction creates a new checkpoint at the read

of a shared object only if the conflict probability value of the

shared object is greater than some threshold value.

 Further, a transaction creates the new checkpoint only if the

number of operations done by the transaction between this and

the previous checkpoint is greater than some desired number

of operations between two checkpoints.

When to cluster with an existing checkpoint - Once the

above two factors are examined, the decision of whether to

cluster with existing or to create a new checkpoint becomes

clear.

How to create a new checkpoint - For all the local/shared

objects in its local data block which have their dirty-bits set, the

transaction pushes their current values in their respective undo-

stacks and resets their dirty-bits. It then captures the current

continuation, which in our framework is the current values of the

various undo-stack pointers in the local data block, and, the

transaction's program location. Subsequently, it creates an entry

in the transaction's checkpoint log.

How to cluster with an existing checkpoint – Clustering a

candidate checkpoint with a previous one just involves updating

the victim shared object list of the previous checkpoint with the

current shared object.

2.2.3 Conflict Probability
Initially when there are no transactions, the conflict probability

of all the shared objects is 0. As multiple transactions read/write

a shared object, they update its conflict probability value as

follows.

Let us define the following:

k: total number of transactions accessing (reading and writing)

the shared object.

n: total number of transactions that will update the shared object

and thus will generate conflicts with other concurrently accessing

transactions.

The conflict probability for the shared object is then set to n/k,

whenever k>1.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

85

2.2.4 Partial Rollback
Once a transaction is ready-to-commit, it needs to check whether

or not it had read and used a consistent set of shared objects,

which it does using the global version numbers as in the gv

algorithm. Additionally it now needs to un-sync those shared

variables in the shared object store, which it had read, and which

are no longer consistent (if there are any of those). Finally,

depending upon whether or not it was found safe to commit this

transaction, a partial rollback operation is initiated. A partial

rollback operation involves identifying the safest checkpoint to

unroll the transaction to. The safest checkpoint is the earliest

transaction program location, where the transaction read any of

those shared objects which are out-of-sync now. The transaction

progressively searches through the checkpoint log entries till it

finds the first log entry pertaining to any of these out-of-sync

shared objects, this entry is then considered as the safest

checkpoint to unroll. Subsequently, the transaction applies the

selected checkpoint's continuation and then proceeds from the

rolled back transaction program location.

3. SIMULATION EXPERIMENTS
We developed a CCPR simulator to assess the overheads vs.

conflict cost savings achievable through the algorithm. Two

applications were studied in the experiments - Skip-Lists (SL),

Red-Black-Trees (RBT). Insert and delete operations on these

data structures were manually modeled as STM transactions,

each transaction essentially being a series of read, write and

other (e.g. comparison) operations on some shared/local

variables. All experiments were done on an Intel dual-core

machine. We varied the percentage of conflicting transactions by

gradually increasing the number of transactions scheduled

concurrently by the simulator

RBT – The application Red-Black Tree is a commonly used data

structure. 500 random insert and delete RBT transactions were

made to run on the simulator, and the total number of shared

memory read operations performed for CCPR and for GV were

counted. Figure 3 shows the savings in the conflict costs

achievable through the CCPR algorithm. It compares the

SMR_CCPR(i.e. total shared memory read operations in CCPR)

with SMR_GV(i.e.. total shared memory read operations in GV).

It is worth noting that as the percentage of conflicting

transactions increases, the difference between SMR_CCPR and

SMR_GV becomes more prominent. SMR_Defined is the actual

number of shared memory read operations over all the

transactions.

Comparison of SMR Operations - RBT

0

2000

4000

6000

8000

0-10% 10-20% 20-30% 30-35% 35-40% >40%
Percentage of Conflicting Transactions

SMR_Defined SMR_CCPR SMR_GV

Figure 3. Comparison of shared memory read operations –

RBT.

Figure 4 shows the effect of threshold probability on the

percentage savings of the shared memory read operations. It is

interesting to note that for this application high threshold

probabilities of 0.6 and 1 were also good enough to considerably

save on the conflict costs. Another thing worth noting is that,

higher the threshold probability value, the lesser will be the

overheads in our system, since most candidate checkpoints will

be clustered with previous ones.

Effect of Threshold Probability - RBT

15.000

15.200

15.400

15.600

15.800

16.000

16.200

16.400

16.600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold Probability

%
ag

e
sa

vi
n

g
s

o
f

S
M

R

o
p

er
at

io
n

s

Figure 4. Effect of threshold probability on conflict cost

savings - RBT.

Figure 5 and 6 characterize CCPR overheads in terms of

checkpoints created by various transactions. It is interesting to

note that as the percentage of conflicting transactions increase,

on an average more number of checkpoints are created and when

this percentage is less, transactions take lesser checkpoints, thus

keeping the overheads under control.

Checkpoints Created vs. Percentage Conflicts - RBT

0

25

50

10-20% 20-30% 30-35% 35-40% >40%
Percentage of Conflicting Transactions

N
u

m
b

e
r

o
f

T
ra

n
s

a
c

ti
o

n
s

1Checkpoint 2 Checkpoints >2 Checkpoints

Figure 5. Effect of percentage of conflicting transactions on

number of checkpoints taken – RBT.

Checkpoints Created vs. Percentage Conflicts - RBT

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

10-20% 20-30% 30-35% 35-40% >40%

Percentage of Conflicting Transactions

A
ve

ra
g

e
N

u
m

b
er

 o
f

C
h

ec
kp

o
in

ts

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

86

Figure 6. Effect of percentage of conflicting transactions on

average number of checkpoints taken – RBT.

 SL – The application Skip-Lists is another commonly used data

structure. 500 random insert and delete SL transactions wete

made to run on the simulator. Figures 7-10 present graphs

similar in those of RBT.

It is worth noting that in this case a threshold probability of 0.4

was good enough.

Comparison of SMR Operations - SL

0

1000

2000

3000

4000

5000

10-20% 20-30% 30-40% 40-50% >50%
Percentage of Conflicting Transactions

SMR_Defined SMR_CCPR SMR_GV

Figure 7. Comparison of shared memory read operations –

SL.

Effect of Threshold Probability - SL

10.000

11.000

12.000

13.000

14.000

15.000

16.000

17.000

18.000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Threshold Probability

%
ag

e
sa

vi
n

g
s

o
f

S
M

R

o
p

er
at

io
n

s

Figure 8. Effect of threshold probability on conflict cost

savings - SL.

Checkpoints Created vs. Percentage Conflicts - SL

0

25

50

75

100

125

150

10-20% 20-30% 30-40% 40-50% 50%
Percentage of Conflicting Transactions

N
u

m
b

e
r

o
f

T
ra

n
s

a
c

ti
o

n
s

1Checkpoint 2 Checkpoints >2 Checkpoints

Figure 9. Effect of percentage of conflicting transactions on

number of checkpoints taken – SL.

Checkpoints Created vs. Percentage Conflicts - SL

0

0.1

0.2

0.3

0.4

0.5

10-20% 20-30% 30-40% 40-50% 50%

Percentage of Conflicting Transactions

A
ve

ra
g

e
N

u
m

b
er

 o
f

C
h

ec
kp

o
in

ts

Figure 9. Effect of percentage of conflicting transactions on

average number of checkpoints taken – SL.

4. RELATED WORK
Among existing non-blocking algorithms, TL2 [4] uses lazy

versioning with commit-time locking. However, it is based on a

global version-clock based validation technique, and does a lazy

conflict detection followed by a full transaction abort if required.

The CCPR algorithm in comparison proposes the use of

continuous conflict detection with partial rollbacks if required.

Koskinen and Herlihy [5] first illustrated the use of checkpoints

to do a partial rollback operation in boosted transactions [6].

Their work complements but does not completely replace

conventional read/write synchronization and recovery. Our CCPR

algorithm however, provides a full read/write synchronization

and recovery technique based on automatic checkpointing, partial

rollback and continuous conflict detection.

Waliullah and Stenstrom [7] suggested the use of checkpoints

and partial rollbacks in the context of HTMs. Our proposal is

with reference to STMs rather than HTMs and further the other

main differences are: (1) The algorithm in [7] is demonstrated

on a TCC framework which uses lazy conflict detection, as

compared to the continuous conflict detection that CCPR uses,

(2) In their algorithm, whenever a transaction commits, all

addresses in its write set are compared with the read set of each

of the ongoing transactions, and if a match is found, a conflict is

generated. This method of conflict detection is very costly since

each active transaction irrespective of whether or not conflicts,

needs to be interrupted and checked during any other

transaction's commit. CCPR does not have any such limitation.

(3) Some of our suggestions to reduce CCPR overheads (e.g.

moving from 1-CCPR to n-CCPR) can be applied in their

framework to reduce their algorithm's overheads.

Other uses of the partial abort/rollback operations were mostly

done [8, 9, 10] to provide support for open and closed nested

transactions. However, these works differ from our work, since

we use the concept of partial abort/rollback for undoing some

operations within a transaction and hence do not require

transactions to be nested to allow them to rollback partially.

Tabba et al. [11] propose a non-blocking, zero indirection

transactional memory that can also use some HTM features for

performance. They have a heavy usage of contention managers,

are abort-centric and they show that they perform better for

benchmarks with smaller number of conflicts. Unlike their

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

87

scheme, we have shown a good performance for cases with high

conflicts.

Another line of work [12] in TMs is that of feedback directed

dynamic selection of various implementations of atomic blocks.

They are able to show that they reduce the wasted effort in

aborted transactions by switching between optimistic and

pessimistic concurrency control based on variables that can cause

large number of conflicts. We have a probabilistic model that

builds in these features in terms of determining the points to

which a transaction should rollback and when should it rollback.

There has been good amount of work going on in building

theoretical foundations for TMs as well. The works reported in

[13], and [14] build formal models for STM and verification

respectively. Recently, there have been a couple of studies on

trade-offs involved in some important aspects of a TM. The work

by Keidar and Perelman [15] studies the number of aborts that

take place in a STM implementation and try to study the trade-

off involved in reducing the number of aborts that are

unnecessary. Another work by Attiya et al [16] studies the

tradeoff in disjoint parallel access and indivisibility of read

operations. These works shall be useful for future extensions and

formal reasoning of CCPR.

5. CONCLUSIONS
We presented a novel partial rollback STM algorithm, CCPR, for

intelligently checkpointing and partially rolling back

transactions.

 Our simulation results establish that partially rolling

back transactions is clearly desirable over full

transactional aborts, especially when the percentage of

conflicting transactions is high.

 Checkpointing a transaction saves a good amount of

work that had to be done otherwise, in case of a

conflict.

 Intelligent clustering of checkpoints helps reduce

CCPR overheads and make it prone to cases when

transactions are small or don’t conflict much with each

other.

 Further, it shows that CCPR can deliver a cost

reduction of 16% to 18% in terms of reduction in the

total number of shared memory read operations.

6. REFERENCES
[1] Nir Shavit and Dan Touitou. 1995. Software transactional

memory. In PODC’95

[2] Larus, J.R. and Rajwar, R. 2006. Transactional Memory.

Morgan and Claypool.

[3] Calin Cascaval, Colin Blundell, Maged Michael, Harold W.

Cain, Peng Wu, Stefanie Chiras, Siddhartha Chatterjee.

2008. Software Transactional Memory: why is it only a

research toy?

DOI=http://www.cse.ust.hk/~charlesz/comp610/paper/p46-

cascaval.pdf

[4] Dave Dice, Ori Shalev, and Nir Shavit. Transactional

locking II. DISC, 06.

[5] Eric Koskinen and Maurice Herlihy. Checkpoints and

continuations instead of nested transactions. In SPAA, 08

[6] Maurice Herlihy and Eric Koskinen. Transactional boosting:

a methodology for highly-concurrent transactional objects.

In PPoPP, 08

[7] M. M. Waliullah and P. Stenstrom. Intermediate

checkpointing with conflicting access prediction in

transactional memory systems. In IPDPS 08.

[8] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore,

Luke Yen, Mark D. Hill, Ben Liblit, Michael M. Swift, and

David A. Wood. Supporting nested transactional memory in

logTM. SIGPLAN Not., 06.

[9] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony

L. Hosking, Richard L. Hudson, J. Eliot B. Moss, Bratin

Saha, and Tatiana Shpeisman. Open nesting in software

transactional memory. In PPoPP, 07.

[10] Tim Harris and Srdan Stipic. Abstract nested transactions.

In TRANSACT, 07

[11] Tabba, Fuad and Moir, Mark and Goodman, James R. and

Hay, Andrew W. and Wang, Cong. NZTM: nonblocking

zero-indirection transactional memory. In SPAA’ 09

[12] Sonmez, Nehir and Harris, Tim and Cristal, Adrian and

Unsal, Osman S. and Valero, Mateo. Taking the heat off

transactions: Dynamic selection of pessimistic concurrency

control. In IPDPS ’09

[13] Michael L. Scott. Sequential Specification of Transactional

Memory Semantics. In TRANSACT, 06.

[14] Ariel Cohen, JohnW. O’Leary, Amir Pnueli, Mark R. Tuttle,

and Lenore D. Zuck. Verifying Correctness of Transactional

Memories. In FMCAD, 09

[15] Keidar, Idit and Perelman, Dmitri. On avoiding spare aborts

in transactional memory. In SPAA 09

[16] Attiya, Hagit and Hillel, Eshcar and Milani, Alessia.

Inherent limitations on disjoint-access parallel

implementations of transactional memory. In SPAA 09.

