©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 — No. 29

Software Maintenance Effort Estimation —
Neural Network Vs Regression Modeling Approach

Ruchi Shukla
Department of Computer Science and Engineering
Motilal Nehru National Institute of Technology
Allahabad, India — 211004

ABSTRACT

The global IT industry has now matured. As more and more
systems grow old and enter into the maintenance stage, software
maintenance (SM) is becoming one of the most carried out and
challenging tasks. Besides, the industry is also facing a shift in
traditional technical environment by way of use of newer tools
and approaches of software development, migration from legacy
software to current software and dynamic changes in the SM
environment. The challenge then lies in accurately modeling and
predicting the SM effort, schedule and risk involved, under the
above circumstances. This work employs a neural network (NN)
approach to model and predict the software maintenance effort
based on an available real life dataset of outsourced maintenance
projects (Rao and Sarda, 36 projects of 14 drivers). A
comparison between results obtained by NN and regression
modeling is also presented. It is concluded that NN is able to
successfully model the complex, non-linear relationship between
a large number of effort drivers and the software maintenance
effort, with results closely matching the effort estimated by
experts.

Categories and Subject Descriptors
General Terms

Keywords
Software maintenance, Effort estimation, Neural network,
Regression.

1. INTRODUCTION

Software is typically delivered with undiscovered flaws. As per
the IEEE standard for software maintenance (SM) the definition
of SM is as follows: “The modification of a software product
after delivery, to correct faults, to improve performance or other
attributes, or to adapt the product to a modified environment”
[1]. SM today is the most expensive and time consuming phase
especially in case of legacy, large and complex systems. Due to
architectural modifications their original design no longer
matches the new business goals and requirements [2]. SM is a
dynamic process and its planning involves estimating size, effort,
duration, staff and costs. Problems of maintainer’s job
switchover, recruitment of experienced maintainers, costing and
total project duration while submitting a maintenance bid,

A K Misra
Department of Computer Science and Engineering
Motilal Nehru National Institute of Technology
Allahabad, India — 211004

optimum resource allocation and vast variety of projects have
made accurate estimation of maintenance cost a fairly
challenging problem for the maintenance organizations.

2. LITERATURE REVIEW

International Software Benchmarking Standards Group — ISBSG
- 2005 (http://www.isbsg.org) provides an initial analysis of the
ISBSG maintenance and support data. The other popular datasets
include - COCOCMO 81 and COCOCMO II, COSMIC, IFPUG,
Rao and Sarda, Desharnais, Kemerer etc. ([3], [4]). Recent
research has focused on the use of function points (FPs) in effort
estimation. However, a precise estimation should not only
consider the FPs, representing the software size, but should also
include different elements of the development environment.
Reference [5] proposed a SM project effort estimation model
based on function points. It used FPs to calculate the volume of
maintenance function. Ten value adjustment factors were
considered and grouped into three categories of maintenance
characteristics, i.e. the people domain, product domain and the
process domain.

Various mathematical and machine learning or artificial
intelligence (Al) based techniques like regression analysis,
artificial neural networks (ANN), genetic algorithms (GA), fuzzy
logic (FL), case based reasoning etc. are being used for accurate
prediction and estimation of SM effort ([6]-[8]). Most of these
studies are based on the hard to estimate maintained code size
metric ‘lines of code’ (LOC) or the FP metrics. Reference [9]
presented a review of studies on estimation of software
development effort. The unit effort expended on maintenance of
a system was dependent on many external factors and was not a
linear relation with respect to time [10]. Reference [11]
compared the prediction accuracy of different models using
regression, neural networks and pattern recognition approaches.
Reference [12] listed the following four groups of factors
affecting the outsourced maintenance effort: system baseline,
customer attitude, maintenance team and organizational climate;
and described how a system dynamics model could be build.

However, till date no single estimation model has been
successfully applied across a wide variety of projects. Although,
there are many likely benefits of using more than one technique,
there is no way to decide beforehand, which techniques can be

83

©2010 International Journal of Computer Applications (0975 - 8887)

applied for SM effort estimation. Often, adequate information of
real life SM projects regarding size, maintenance history, human
and management factors (management focus, client attitude, need
for multi-location support teams etc.) is unavailable. This makes
the problem of objectively estimating SM effort almost in-
tractable.

Artificial intelligence combines the elements of learning,
adaptation and evolution e.g. NN and FL that are able to learn
from experimental data, represent highly non-linear and multi-
variate relationships, and are expertise or rule based. These have
been successfully applied to an environment typically present in
a modern day SM company ([13]-[17]). Many Al based hybrid
schemes have also been investigated for SM effort estimation
including neuro-GA, grey-GA, neuro-fuzzy, etc. ([18]-[20]).
Hence, a soft computing approach based on ANN is preferred in
the present work.

3. PROPOSED WORK

The objective of the present work is to develop a multilayer feed
forward NN with back-propagation and Bayesian regularization
training. The choice of neural networks as the estimation tool
was governed by the fact that a properly trained NN gives
matching outputs when presented with unseen inputs, as is the
case in SM effort estimation. The present work is based on the
open literature effort data of 36 outsourced SM projects of 14
effort drivers as shown in Table 1 and Appendix 1 [4]. No NN
based SM effort estimation studies using this dataset are
available in the literature.

Table 1. Effort Drivers.

Sl. Effort Drivers

Existence of restart/recovery logic in batch programs

w

Percentage of the online programs to the total number of
programs

Complexity of the file system being used

Average number of lines per program

Number of files (input, output, sort) used by the system

Number of database objects used by the system

@ Mmoo

Consistency and centralization of exceptional handling in
programs

H.| Whether structured programming concepts have been
followed in the program

I. | Percentage of commented lines of code to the total lines of
code of the system

Number of programs executed as part of a batch job

Number of database structures used by a typical program

% of the update programs to the total number of programs

Nature of service level agreement (SLA)

ZIZ| M| A=

Whether structured programming concepts have been
followed in the program

Volume 1 — No. 29

The organization of rest of the paper is as follows: Section 4
presents the results of statistical analysis and regression
modeling. Section 5 deals with the neural network modeling
approach adopted in the present work. Section 6 presents the
analysis and validation of results obtained while Section 7
presents the concluding remarks.

4. STATISTICAL ANALYSIS AND
REGRESSION MODELING

Before conducting regression analysis we proceed to check if the
data was normally distributed. Fig. 1 shows a histogram plot of a
normally distributed dataset. From the data of effort drivers as
input and estimated effort as output, we ranked the 14 effort
drivers based on the Taguchi signal-to-noise ratio concept, for the
‘smaller-is-better’ optimization criterion. A linear regression
model (Eq. 1) was obtained using the commercial package
Minitab, by conducting S/N ratio based ANOVA (Analysis of
Variance), as shown in Table [2]. The obtained P (probability)
values gave the relative importance of each variable.

Histogram of EFFORT_AVE
Normal

Mean 14.79
StDev 1.388
N 36

144 —

124 —

-
o
L

"\

Frequency

0 11 12 13 14 15 16 17 18 19
EFFORT_AVE

Fig. 1. Histogram showing normal distribution of data.

Table 2. ANOVA Analysis.

Predictor Coef SE Coef T P

Constant 6.6309 0.5142 12.90 0.000
A 0.3111 0.1414 2.20 0.039
B 0.029167 0.004329 6.74 0.000
C 0.46667 0.08658 5.39 0.000
D 0.00040556 0.0000577 7.03 0.000
E 0.0016500 0.0003463 4.76 0.000
F 0.028611 0.005772 4.96 0.000
G 0.004167 0.004329 0.96 0.347
H 0.03490 0.01920 1.82 0.083
| 0.03264 0.01443 2.26 0.034
J 0.05556 0.01443 3.85 0.001
K 0.04375 0.01443 3.03 0.006
L 0.019928 0.003764 5.29 0.000
M 0.10867 0.01920 5.66 0.000
N 0.39792 0.04329 9.19 0.000

$=0.424139 R-Sq=94.4% R-Sq(adj) = 90.7%

84

©2010 International Journal of Computer Applications (0975 - 8887)

EFFORT_AVE = 6.63 + 0.311 A + 0.029 B + 0.467 C + 0.0004
D + 0.0016 E + 0.028 F + 0.0041 G + 0.0349 H + 0.0326 | +
0.0556 J + 0.0437 K + 0.019 L+ 0.109 M + 0.398 N ®

The parameter N (whether structured programming concepts
have been followed in the program) is found to have a
considerably dominant effect on the effort and is ranked at no. 1,
while the parameter G (consistency and centralization of
exceptional handling in programs) has the least significant effect.
A high value of 0.944 of the square of correlation coefficient (R-
Sq) shows an excellent agreement between the linear model
predicted and experimental values, further indicating the
consistency of data. Thereafter the main effect plot (Fig. 2) was
drawn to evaluate the change in mean effort at different level
settings of each variable. It is evident that almost all the drivers
except G and H had an increasing effect on the predicted effort
with increased level settings.

A B
15.6 |
150 - e /
—
14.4 - ./
T T T T T
1 2 10 30 50
E F
15.6 |
7))
c 150 " -
© -—
Q 144 -—
z T T T T T T
"6 125 375 625 5 20 35
c [J
© 156
g 150 e __—*
— p—
14.4
T T T T T T
2 8 14 2 8 14
M N
15.6
15.0 4 /. /
14.4 - 0/ /
T T T T T T
1 5 10 1 3 5
C D
T T T T T T
1 2 3 750 2250 3750
G H
o -— °
| S —e
—
T T T T T T
20 40 60 1 5 10
K L
/. /
._/—.7 ./
T T T T T T
2 8 14 7 30 53

Fig. 2. Main effects plot.

Volume 1 — No. 29

However, the same may not be true beyond the present range of
parameters and more so when there is a non-linear relationship
between the effort drivers and response. Hence, the neural
network based approach has also been attempted as an alternate
method and a comparison is made between the two approaches.

5. NEURAL NETWORK MODELING

ANN is a class of flexible non-linear model inspired by the way
in which the human brain processes information. Given an
appropriate number of hidden layer units, it is well established
that ANN can approximate any non-linear function, to a
reasonable degree of accuracy [23]. The flexibility and
generalization ability of ANN have made them a popular
modeling tool across different research areas in recent years.
ANN trained using an algorithm learns stagewise, progressing
from fairly simple to more complex mapping functions. The
mean-square error decreases with an increasing number of
iterations during training.

The NN architecture chosen in our case was the 3 layer back-
propagation, with 14 inputs, 14 hidden neurons and 1 output (14-
11-1), as shown in Figure 3. The uni-modal sigmoid activation
function in hidden layer and output layer was used in the present
study. We initially kept only one hidden layer with hidden nodes
equal to the inputs i.e. 14. The number of hidden nodes was
gradually increased from 14 and the reduction in SSE observed.
During trials, the minimum MSE did not change significantly
with increased hidden nodes. Hence, a simplified NN
architecture with only one hidden layer and minimum number of
hidden neurons was finalized. The network was trained using 27
samples (50% of input data set) and rest 25% each were used for
validation and testing. In this work, we have used the Matlab NN
toolbox functions ([24], [25]). This toolbox provides utility
functions for creating and training NNs, and verification and
validation of NNs by simulation and visualization.

Hidden
Input Layer
Output
Layer
Effort driver 1
Effort driver 2 Effort

Effort driver
14

Fig. 3. NN architecture.

85

©2010 International Journal of Computer Applications (0975 - 8887)

6. ANALYSIS AND VALIDATION OF

RESULTS

A comparison of the 14-14-1 NN output with measured
experimental values of effort shows the % error varying from
+4.32 to -38.56, +18.72 to -5.87 and +6.12 to -2.31 for the
training dataset (18 nos.), testing dataset (9 nos.) and validation
dataset (9 nos.), respectively. The average % error though is
significantly small at -1.93, 2.40 and 0.46, respectively. The next
step was to perform analysis of the network response. The results
of training of available data with a 14-14-1 architecture are
shown in Figure 4. The obtained trends were as expected since
the test set error and the validation set error have similar
characteristics and tend to converge very fast (40 epochs).
Further, any significant overfitting does not seem to have
occurred. The sum of squared errors SSE for training (10.31),
testing (0.99) and validation (0.64) as against a target of 0.0 are
on expected lines and similar to that given in literature.

2Trr:\irling SSE =10.3154 Test SSE = 0.998453 Validation SSE = 8.64801
0 T T T T T T T

N—

10" -

Tr-Blue Val-Green Tst-Red
o

10 T T

SSW
=
oo
(

_ 20 T T T T T T T
: J\N\/\/\/\A/\/W/W\/\/ Vel
g \— Validation
3 10 NANANANANAAAAAAANAT 1 Test
5
z |\
S D e e ‘ —
0 5 10 15 20 25 30 35 40
Stop Training Epoch

Fig. 4. NN simulation plot.

Best Linear Fit: A = (0.268) T + (10.7)
20

O Data Points
R =0.913 Best Linear Fit
18 1 A=T
16+ A
_— 0O
< 14 q
o_
12+ q
10 q
8 .
8 10 12 14 16 18 20

Fig. 5. Regression plot showing the target and actual values
as predicted by NN.

Volume 1 — No. 29

Linear regression analysis between the network outputs and the
corresponding targets was performed as shown in Fig 5. The two
outliers of smallest effort (9.8) and largest effort (19.2) show
larger errors of -38.56% and 18.72%. Hence, a log
transformation (i.e. log(inputs) and log(output effort) has also
been attempted, significantly reducing the above errors to
-13.98% and 7.28%. For all the above details reference may be
made to Appendix 2. A much simplified NN architecture was
able to effectively and successfully model the highly non-linear
relationship between the 14 variables and a single output
parameter, as is evident from the high correlation coefficient ‘R’
value (around 0.9), for multiple runs of the code (Fig. 5).

The predicted effort (based on uncoded inputs / actual values)
using the regression equation (Eq. 1) has been shown in the last
column of Appendix 1. It can be inferred from the predicted
values that the Taguchi approach based predicted effort models
the effort with high accuracy validating the proposed approach.
However, a single model will be insufficient to deal with vastly
varying nature of projects.

7. CONCLUSIONS

In this paper, effectiveness of NN modeling approach of effort
estimation for outsourced software maintenance projects was
presented. The NN model trained using experimental data was
found to have good generalization capabilities and is able to
successfully predict the effort closely matching the experimental
observations. Since the effect of various cost drivers on effort is
often quite complex, ANN can be used as an effective tool to
model and predict the SM effort. However, the models should
also be evaluated by exploring the model sensitivity and
scalability on a variety of historical and unseen input data [26].

8. REFERENCES

[1] IEEE Standard 1219: 1998. Standard for software
maintenance, IEEE Computer Society Press.

[2] Boehm, B., Abts, C. and Chulani, S. 2000. Software
development cost estimation approaches — a survey, Ann.
Software Eng., 10, 177-205.

[3] Shukla, R and Misra, A. K. 2009. Al Based Framework for
Dynamic Modeling of Software Maintenance Effort
Estimation, Proceedings of International Conference on
Computer and Automation Engineering, 313-317.

[4] Rao, B. S. and Sarda, N. L. 2003. Effort drivers in
maintenance outsourcing - an experiment using Taguchi’s
methodology, Proceedings of Seventh IEEE European
Conference on Software Maintenance and Reengineering, 1-
10.

[5] Ahn, Y., Suh,J., Kim, S. and Kim, H. 2003. The software
maintenance project effort estimation model based on
function points, J. Software Maint. and Evol.: Res. and
Practice, 15, 2, 71-78.

[6] Tronto, I. F. B., Silva, J. D. S. and Anna, N. S. 2008. An
investigation of artificial neural networks based prediction
systems in software project management, J. Syst.

Software, 81, 356-367.

[7] Martin, C. L., Méarquez, C. Y. and Tornés, A. G. 2008.
Predictive accuracy comparison of fuzzy models for software
development effort of small programs, J. Syst. Software, 81,
6, 949-960.

86

©2010 International Journal of Computer Applications (0975 - 8887)

[8] Park, H. and Baek, S. 2008. An empirical validation of a
neural network model for software effort estimation, Exp.
Syst. Applic., 35, 3, 929-937.

[9] Jorgensen, M. 2004. A review of studies on expert
estimation of software development effort, J. Syst.
Software, 70, 1-2, 37-60.

[10] Jorgensen, M. 1995. Experience with accuracy of software
maintenance task effort prediction models, IEEE Trans.
Software Eng., 674-681.

[11] Grimstad, S. and Jgrgensen, M. 2007. Inconsistency of
expert judgment-based estimates of software development
effort, J. Syst. Software, 80, 11, 1770-1777.

[12] Bhatt, P., Shroff, G., Anantram, C. and Misra, A. K. 2006.
An nfluence model for factors in outsourced software
maintenance, J. Software Maint. and Evol.: Res. and
Practice, 18, 385-423.

[13] Shukla, R. and Misra, A. K. 2008. Estimating software
maintenance effort - A neural network approach,
Proceedings of the 1st India Software Engineering
Conference - ISEC, Hyderabad, India, 107-112.

[14] Khoshgoftaar, T. M. I. and Abran, A. 2002. Can neural
networks be easily interpreted in software cost estimation,
IEEE Trans. Software Eng., 1162-1167.

[15] Pendharkar, P. C., Subramanian, G. H. and Rodger, J. A.
2005. A probabilistic model for predicting software
development effort, IEEE Trans. Software Eng., 31, 7, 615-
624.

Volume 1 — No. 29

[16] Witting, G. and. Finnie, G. 1994. Using artificial neural
networks and function points to estimate 4GL software
development effort. J. Inform. Systems, 1, 2, 87-94.

[17] Srinivazan, K. and Fisher, D. 1995. Machine learning
approaches to estimating software development effort. IEEE
Trans. Software Eng., 21, 2, 126-137.

[18] Boetticher, G. D. 2001. An assessment of metric
contribution in the construction of a neural network-based
effort estimator, Proceedings of Second Int. Workshop on
Soft Computing Applied to Software Engineering.

[19] Shukla, K. K. 2000. Neuro-genetic prediction of software
development effort, Inform. Software Tech., 42, 701-713.

[20] Huang, S. J., Chiu, N. H. and Chen, L. W. 2008. Integration
of the grey relational analysis with genetic algorithm for
software effort estimation, European J. Oper. Research, 188,
3, 898-9009.

[21] Phadke, M. S. 1989. Quality Engineering Using Robust
Design, Eaglewood cliffs, NJ: Prentice Hall.

[22] www.minitab.com

[23] Haykin, S. 1999. Neural networks: A comprehensive
foundation, Prentice Hall.

[24] Shukla, M. and Tambe, P. B. 2010. Predictive modeling of
surface roughness and kerf widths in abrasive water jet
cutting of kevlar composites using artificial neural network,
Int. J. Mach. Machin. of Mater., In press.

[25] www.mathworks.com

[26] Aggarwal, K. K., Singh, Y., Chandra, P. and Puri, M. 2004.
Sensitivity analysis of fuzzy and neural network models,
ACM SIGSOFT Software Eng. Notes, 29, 5, 1-5.

87

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 — No. 29

Appendix 1

lfl'(') AlB|c| D E|F|G|H|J|K|L|M|N/|O/| Effort Ave P'Egioc:fd
1. |1]10 1] 750 | 125 | 5 |20 | 1 | 2 |2 |2 |7] 1|1 9.8 9.5528
5> | 1|10 | 2| 2250 | 375 |20 |40 | 5 | 8 | 8 | 8 | 30| 5 | 3 141 13.8528
3. | 1| 10| 3| 3750 | 625 | 35 | 60 | 10 | 14 | 14 | 14 | 53 | 10 | 5 19.2 18.9528
4 | 1|10 | 1] 750 | 125 | 5 |40 | 5 | 8 | 8 |14 |53 | 10 | 5 145 145194
5 | 1|10 | 2| 2250 | 375 | 20 | 60 | 10 | 14 |14 | 2 | 7 | 1 |1 12.7 12.7194
6. | 1|10 |3 | 3750 | 625 |35 | 20| 1 | 2 | 2 | 8 | 30| 5 | 3 15.1 15.1194
7 | 210 | 1] 750 | 375 |35 | 20| 5 |14 |14 | 2 | 30| 5 | 5 147 14.7639
8. | 2|10 | 2| 2250 | 625 | 5 |40 |10] 2 | 2 | 8 | 53] 10| 1 14.0 14.0639
9. | 210 | 3| 3750 | 125 |20 |60 | 1 | 8 | 8 |14 | 7 | 1 | 3 14.4 14.4639
10. | 2 |10 | 1| 750 | 625 | 20 | 20 |10 | 8 |14 | 8 | 7 | 10 | 3 142 14.3639
11. | 2 | 10 | 2 | 2250 | 125 | 35 |40 | 1 | 14 | 2 |14 | 30| 1 | 5 14.4 14.5639
122 |10 | 3 | 3750 | 375 | 5 |60 |5 | 2|8 2 |55 |1 142 14.3639
13.| 1 |30 | 1| 2250 | 625 | 5 |60 | 5 | 2 | 14 | 14 | 30 | 1 | 3 13.9 14.1944
14.| 1 |30 | 2| 3750 | 125 |20 |20 |10 | 8 | 2 | 2 | 53| 5 | 5 151 15.3944
15. | 1|30 |3 750 | 375 |35 |40 | 1 |14 | 8 | 8 | 7 |10 1 136 13.8944
16.| 1 | 30 | 1 | 2250 | 625 | 20 | 20 | 1 | 14 | 8 | 14 | 53 | 5 | 1 14.0 14.2611
17.| 1 |30 |2 | 3750 | 125 | 35 |40 | 5 | 2 |14 | 2 | 7 | 10 | 3 15.1 15.3611
18. | 1 |30 | 3| 750 | 375 | 5 | 60 | 10 2 301 |5 136 13.8611
19. | 2 | 30 | 1 | 2250 | 125 | 35 | 60 | 10 88|75 |5 148 14.4722
20.| 2 [30 | 2| 3750 | 375 | 5 |20 | 1 | 8 | 14 | 14 | 30 | 10 | 1 15.0 14.6722
21.| 2 [30 | 3| 750 | 625 |20 |40 | 5 |14 | 2 | 2 | 53| 1 | 3 15.6 15.2722
22.| 2 [30 | 1 | 2250 | 375 | 35 | 60 8 53 | 10 | 3 15.1 14.8722
23| 2 (30 | 2| 3750 | 625 | 5 |20 | 5 | 14| 8 | 8 | 7 | 1 |5 15.6 15.3722
24| 2 [30 | 3| 750 | 125 | 20 |40 |10 | 2 | 14 | 14 | 30 | 5 | 1 14.4 141722
25.| 1 |50 | 1| 3750 | 375 | 5 | 40 | 10 | 14 4|7 |53 15.1 14.8194
26.| 1 |50 | 2| 750 | 625 |20 |60 | 1 | 2 | 8 | 2 | 30| 10 | 5 16.0 15.7194
27.| 1 |50 | 3 | 2250 | 125 | 35 | 20 | 5 14 58 1 |1 15.6 15.3194
28. | 1 | 50 | 1 | 3750 | 375 | 20 | 40 | 1 48 5] 15 16.3 16.2528
29. 1[50 | 2| 750 | 625 |35 |60 | 5 | 8 | 2 |14] 7 |5 |1 14.4 14.3528
30. | 1 | 50 | 3| 2250 | 125 | 5 | 20 | 10 | 14 2 |30]10]3 15.3 15.2528
3L | 2 | 50 | 1| 3750 | 625 | 35 | 40 | 10| 8 | 8 30 1 |1 148 15.1639
32.| 2|50 | 2| 750 | 125 | 5 |60 | 1 |14 |14 | 8 |53 | 5 | 3 145 14.8639
33. |2 |50 | 3| 2250 | 375 |20 |20 | 5 | 2 | 2 | 14| 7 |10 5 16.4 16.7639
34| 2 |50 | 1| 3750 | 125 | 20 | 60 | 5 | 14 8 |30 |10 1 15.3 15.2639
3.2 |50 | 2| 750 | 375 |35 |20 10| 2 |8 | 14|53 1 |3 15.3 15.2639
36.| 2 | 50 | 3| 2250 | 625 | 5 | 40 | 1 4|2 |7]5]5 16.3 16.2639

88

Appendix 2

©2010 International Journal of Computer Applications (0975 - 8887)

sl. | Actual N!\l % % error
No. | Effort PrEeglocrtf d error (log transformation)
TRAINING SET
1 9.8 13.61 -38.56 -13.98
2 141 14.24 -0.70 -1.10
5 12.7 13.88 -8.59 -3.19
6 15.1 14.72 1.85 0.84
9 14.4 14.49 -0.51 -0.11
10 14.2 14.41 -1.25 -0.48
13 13.9 14.35 -2.95 -1.41
14 15.1 14.85 0.74 0.58
17 15.1 14.82 1.29 0.60
18 13.6 14.45 -6.34 -2.20
21 15.6 14.99 3.41 124
22 15.1 14.82 1.46 0.15
25 15.1 14.71 2.28 0.92
26 16.0 15.16 4.32 1.93
29 14.4 14.48 -0.48 -0.05
30 15.3 14.91 1.84 121
33 16.4 15.53 4.32 1.87
34 15.3 14.79 3.12 1.42
Frerage | 103 0.65
TESTING SET
3 19.2 15.55 18.72 7.28
14.7 14.52 1.14 0.68
11 14.4 14.59 -1.50 -0.25
15 13.6 14.43 -5.87 -2.12
19 14.8 14.79 -0.40 -0.54
23 15.6 15.05 2.74 1.47
27 15.6 14.68 5.63 2.93
31 14.8 14.80 -0.29 0.55
35 15.3 14.97 147 0.84
Average | 15 49 +1.20
Error
VALIDATION SET
145 14.53 -0.18 0.31
14.0 14.33 -2.08 -0.63
12 14.2 14.34 -0.73 -0.08
16 14.0 14.36 -2.31 -1.07
20 15.0 14.87 0.54 0.47
24 14.4 14.41 0.21 -0.06
28 16.3 15.16 6.12 2.82
32 145 14.78 -2.01 -0.78
36 16.3 15.40 4.64 212
Average |14 46 +0.34

Error

Volume 1 — No. 29

89

