©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 — No. 24

Flare: Architecture for rapid and easy development of
Internet-based Applications

Shashank Shekhar
School of Computing Sciences, VIT
University
304, J.J. Apartment, Vijayrangam
Layout, Basavangudi, Bangalore

Mohit Soni
School of Computing Sciences, VIT

NVSN Kalyan Chakravarthy
School of Computing Sciences, VIT
University
Door 20-3-129, Flat 7, Maitri
Nilayam, Shivajyotinagar, Tirupathi

University
1, State Bank Colony, Tonk
Phatak, Jaipur

ABSTRACT

The recent trend in application development that creates globally
accessible, Internet-based applications has proved to be a critical
paradigm for developers. However, the development of such
applications often require the creation and management of online
database storage servers, re-creation of user management
schemes and writing a lot of unnecessary code for accessing
different web-based services using their APIs. Our architecture,
named Flare, proposes a structured and easy way to develop
applications rapidly, in a multitude of languages, which make use
of online storage of data and management of users. The
architecture eliminates the need for server-side programming in
most cases. A Web API provides a common API for various web-
based services like Blogger [2], Wordpress, MSN Live, Facebook
[3] etc. Access Libraries provided for major programming
languages and platforms make it easy to develop applications
using the Flare Web Service. We demonstrate a simple micro-
blogging service developed using these APIs in two modes: a
graphical browser-based mode, and a command-line mode in
C++, which provide two different interfaces to the same account
and data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Storage and Retrieval — clustering, search process

H.3.4 [Information Storage and Retrieval]: Systems and
Software — distributed systems

K.6.3 [Management of Computing and Information Systems]:
Software Management — software development

K.6.5 [Management of Computing and Information Systems]:
Security and Protection — authentication

General Terms
Algorithms, Performance, Design, Reliability, Languages

Keywords
Internet-based, Application development, Cloud storage, Unified
API, Web Service, User management

1.MOTIVATION

The Internet has become a ubiquitous entity and the development
of new and innovative web-based services has led to an explosion
in the amount of content available. Technologies like AJAX, and
Rich Internet Application providers like Adobe Flex, and JavaFX
have enabled the development of a new breed of innovative and
rich applications. These applications harness the storage and
computational power of the web, and bring it to the desktop and
mobile users. However, there still remains a significant scope for
improvement in the techniques and frameworks used for
developing such applications. There is a need to simplify the
process of writing code for Internet-enabled applications, and
also to bring the same ease of use to all major programming
languages and platforms. To date, each application uses different
sets of classes for accessing web storage services like Amazon S3
or SimpleDB [1] or Box (or manage their own database servers),
manage their own users, and write separate access classes for
each of the web-based services used like Blogger, Wordpress,
Gmail etc. This can get quite cumbersome and results in
significantly increased time for development of applications.

Another challenge is that the data generated by applications and
users is rapid and evolving in nature. Maintaining suitable
storage systems to cater to everybody’s computing needs requires
careful selection of appropriate storage architectures. As the
average Internet access speed across most of the world increases,
the Internet is becoming increasingly real-time, often up to a
single key-stroke. Coping with such real-time applications
requiring very high rates of access, and performance is very
important.

The need to simplify the tools and infrastructure for Internet-
based applications, and to bridge the gap between the web and
traditionally non-browser programming languages is the driving
motivation of this architecture. The architecture proposes a
simple four-layered model for developing Internet-based
applications, with the majority of the repetitive and non-core
work being in the bottom three layers, leaving the application
developer free to focus on rapidly prototyping and developing
new ideas.

112

©2010 International Journal of Computer Applications (0975 - 8887)

2.FLARE ARCHITECTURE
2.10verall Architecture

Applications
(C++, Java, Javascript Python efc)

i

Access Library
(C++, Java, Javascript Python efc)

i

Web Service for Flare APls
(Apps API Users AP, Web API)

i

Storage Backend
(SimpleDB, MySQL etc)

Figure 1: The Flare architecture

Flare uses a four-tier architecture that uses open protocols
(SOAP [5], REST [6]) for communication. The simplified view
of the Flare architecture is given in Figure 1. The top-most layer
is formed by Applications that can be written in a multitude of
languages and platforms and target hosts (desktop, browser,
mobile). The applications layer uses the next layer formed by
Access Libraries that provide access to the web service exposed
by Flare-enabled servers. The third layer implements the Web
service running on Flare-enabled servers for managing the
application & user data, and routing data access calls to and from
the required external web services. The fourth layer is the
Storage backend that provides a high-performance, and indexed
storage system for the Flare Web Service.

2.2API Interfaces

The Flare Web Service provides web methods grouped under
three APIs: Apps API, Users API, and Web API. These APIs
allow apps to store and manage data and users, and access
different web services in a unified fashion without requiring any
server-side programming on the part of the developer. The Apps
API allows the application to easily store and manage data that is
accessible across the Internet without requiring database
management. The Users API provides the basic operations
needed for managing users, and allows applications to manage
users specifically meant for that application. The Web API
provides a set of common APIs to the developer to easily access
web-based services that are similar to each other.

2.3Storage Architecture
Flare can be used with a number of different databases, forming
the bottom-most layer in Figure 1. But the conditions that must
be met by the storage solution are:

e High performance

e High availability

e Scalability

Volume 1 — No. 24

e Indexed
e Data redundancy
e Error recovery

Amazon's SimpleDB provides a simple and elegant solution and
also meets the above conditions. Using SimpleDB eliminates the
need to create and maintain database servers that divert attention
from developing and maintaining the core web service. But the
architecture permits use of other databases like ThruDB [4],
MySQL etc, and both Schema-oriented and Schema-less by
changing the wrapper class between Layer 3 (Flare Web Service)
and Layer 4 (Storage Backend).

3.IMPLEMENATION

The Flare APl is exposed as a Web Service supporting SOAP and
RESTful techniques of communication. The web methods are
grouped into three APIs:

e Apps API

e Users API

e Web API
3.1Apps API

v
g £
b

]

Figure 2: Apps API

The Apps APl is used for creating globally accessible
applications in any of the major languages and permit them to
persist data, and share data between application instances across
the Internet. It eliminates the need for server-side programming
and database management on the developers' part. It makes it
trivially easy to get, put, query/update and delete data from
within the code and keeping it specific for each user account of
the application. Thus the developer only needs to worry about the
Presentation and Application logic.

Two types of storage mechanisms are provided by the Apps API:
the userStore and staticStore. The userStore is a per-user
storage provided for applications that store information particular
to a user, like his high scores in a gaming application, or his
updates in a micro-blogging service built on Flare etc. The data
stored is by default private, but desired items can be made public
to enable other users to view the data without authentication. The
staticStore is useful for storing data that is accessible across all
the instances of the application, regardless of which user is
logged in. For e.g. a blogging service built on Flare could use the
staticStore to keep track of the ten most recent blog posts made
by its users. This data is static to all the instances of the
application, so a user could see the ten most recent posts made by
users of that service across the web.

3.2Users API

113

©2010 International Journal of Computer Applications (0975 - 8887)

applisers

create

authenticate

get

query

update

| delete |

penCAFTCHA

genfudio
CAPTCHA

validate
CAPTCHA

Users API

Figure 3: Users API

The Users APl provides a simple interface for permitting
applications to create and manage users. It eliminates the need to
redo authentication algorithms, user data storage schemas and
server-side programming on the part of the developers as they
can store user data and authenticate them from the Flare servers.
The API provides flexibility to developers by permitting the
storage of as many data key-value pairs about users as required
by the application, without imposing a structure on what is
stored. This is required because every application differs in what
it needs to store about its users. For e.g., social networks built on
Flare might need in-depth personal and professional information,
while simple games might need just the real name of the user,
apart from username and password which are the only mandatory
fields enforced by the Users API.

3.3Web API

The Web API provides a unified API for web services that are
similar to each other. For e.g. all Blogging services can be
accessed and used programmatically using the same API exposed
by Flare, which implements the code for communicating with the
various underlying services like Blogger, Wordpress etc. The
Web API categorizes web services into 9 broad groups:

e Blogging

e Email

e Instant Messaging
e Feeds

e Offbeat devices (SMS, VolIP etc)

e Social Networks

e Maps

e Search

e Music, Videos, Photos and other media services

Volume 1 — No. 24

Thus there are nine different APIs providing a minimum common
feature specification for each group thereby requiring the
developer to work with just one common API for each group. The
APIs also provide a mechanism for the developer to access extra
features provided by a particular web service that the common
API for the group doesn’t provide. Thus it becomes easy for
developers to build complex mash-ups and provide support for
various services in their applications using this API.

3.4Access Libraries

The APIs exposed by Flare will be accessed by libraries ported to
each of the major languages and platforms. These libraries will
enable desktop applications, mobile applications and web-based
Javascript applications to use the storage and unified web APIs in
a standard way. Developers could also write multiple interfaces
for accessing the same application. For e.g. a Web-based micro-
blogging application in Javascript, and a C++ based command-
line version of the same application, both using the same
userStore item thus providing different interfaces to perform the
same actions. To enforce security and authentication. all
communications with the Web service should use the HTTPS
protocol [7].

4. DEMONSTRATION SCENARIO

This demonstration explains in brief the essential code fragments
of Flitter, a simple micro-blogging service in two modes: a
graphical, browser-based interface in Javascript, and a command-
line interface in C++. Both modes provide access to the same
account and data.

4.1Javascript version

The Javascript version, shown in Figure 4, uses the Flare library
from the server and registers the application along with a
developer key with the statements at lines 43 and 44.

43 flare.load("F3ZKLFEW5434TR4H") ;
44 flare.apps.register({“flitterkpp™):

§5 flare.userg.authenticate(f("#username™).val(),

% ("#pasgword”).val(), functicnir) |

76 flare.apps.get{"poats"™, {count: 10}, functicn
{data) { ...

87 peostDatal ‘poat’ + nextPostID] = §("#poat_text”)
vall):

38 flare.apps.put{"notes™, pcstData, {vigibkility:
“public™}, functicn(data, textStatus) { ...

102 flare.apps.get{"posta™, {userID: otherUID,
count: 10}, functicon{data) { ...

Figure 4: Code snippets from Fitter.js

The authentication of the user is performed by line 65 that passes
an argument ‘r’ to the callback function that is either false,
signifying authentication failure, or a valid long-type number,

114

©2010 International Journal of Computer Applications (0975 - 8887)

denoting the userID. This userID is used along with the
password in all future transactions. The recent 10 posts written
by the user is fetched at line 76. The Javascript library for Flare
decodes the XML response sent by the server and sends a key-
value map as the argument ‘data’ to the callback function.

New posts are stored online by the code at line 87 and 88. This
stores the data as public in the userStore in the item marked
by the userID and the appID.

The other screen takes the username as the input, and gets the
ten latest posts by the specified user at line 102. This verifies the
visibility mode of the data requested, and returns the ten posts
that can be shown on the screen.

4.2C++ version

The C++ version, shown in Figure 5, uses a library enclosed in
flare.dll, and includes the necessary header file on line 2.

2 #include “flare.h”

41 FlareGetProperties Igp():
42 fgp.count — 10;

43 flare::apps::get ("posts™, fgp, show my posts):

75 FlareGetFroperties fop():
76 fogp.count — 10; fgp.userID — otherUID:
77 flare::apps::get("posta™, fgp, show_other posta):

Figure 5: Code snippets from Flitter.cpp

The remaining syntax for performing the tasks is almost
identical, except with the replacement of anonymous functions
(that were used in the Javascript version) with function pointers
and the scope resolution operator (: :) being used for namespace
access as in lines 41 — 43. This snippet calls a developer-defined
function show my posts () and passes to it the received
data. The application can also show posts by other users with the
code at lines 75 — 77, using syntax similar to the Javascript
version.

5.APPLICABILITY

While our demonstration application was a simple one, the
architecture and API can be successfully implemented on Web
servers to permit an elegant way for developers to simplify
development. A few, specialized systems that require custom
storage systems and data management schemas might not be
suitable candidates for using the Flare architecture. But this
addresses the needs of a very large base of web and application
developers looking for simpler ways to create Internet-enabled
applications that work on multiple devices and platforms.

The kind of applications that can be developed using the Flare
APIs is really diverse owing to the lack of enforcement of
structure, and a generic design. Applications can be simple and
complex, including simple games and mash-ups to social
networks, blogging services and service aggregators. However,
there remain significant challenges in keeping the system secure
and highly available, and more development and design is
needed to refine the architecture further to cover deeper issues.

Volume 1 — No. 24

6.REFERENCES
[1] Amazon’s Cloud Storage Hiccups.

http://www.wjla.com/news/stories/0208/496511.html.

[2] S Murugesan. Understanding Web 2.0. IT Professional
2009. IEEExplore. Pg 34 — 41.

[3] R Figueiredo, O Boykin, PS Juste, D Wolinsky. Social
VPNs: Integrating overlay and social networks for seamless
P2P networking. Workshop on Collaborative Peer-to-Peer
Systems 2008.

http://byron.acis.ufl.edu/papers/cops08.pdf

[4] T.J. Luciani. ThruDB: Document Oriented Database
Services.

http://thrudb.googlecode.com/svn/trunk/doc/Thrudb.pdf

[5]1 M zur Muehlen, JV Nickerson, KD Swenson. Developing
web services choreography standards—the case of REST vs.
SOAP. Decision Support Systems, 2005. Elsevier.

[6] RESTful URL Naming Conventions.

http://microformats.org/wiki/rest/urls#URL_Conventio
ns

[7]1 1Goldberg, D Wagner, R Thomas, EA Brewer. A Secure
Environment for Untrusted Helper Applications. In
Proceedings of the Sixth USENIX Security Symposium
(1996).

http://eprints.kfupm.edu.sa/20822/

115

http://www.wjla.com/news/stories/0208/496511.html
http://byron.acis.ufl.edu/papers/cops08.pdf
http://thrudb.googlecode.com/svn/trunk/doc/Thrudb.pdf
http://microformats.org/wiki/rest/urls#URL_Conventions
http://microformats.org/wiki/rest/urls#URL_Conventions
http://eprints.kfupm.edu.sa/20822/

