
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

31

An Analysis of Mechanisms for Making IDS Fault
Tolerant

 Perminder Kaur Dhavleesh Rattan Amit Kumar Bhardwaj

ABSTRACT
This paper is a survey of the work, done for making an
IDS fault tolerant. IDS are prone to various attacks and
it becomes the natural primary target of hostile attacks
with the aim of disabling the detection feature and

allowing an attacker to operate without being detected.
This paper suggests that intrusion detection system
(IDS) must be fault tolerant; otherwise, the intruder may
first subvert the IDS then attack the target system at
will. Making an IDS fault tolerant is a challenging task.

1. INTRODUCTION
Fault tolerance is a means of achieving dependability,
working under the assumption that a system contains
faults, and aiming at providing the specified services in

spite of their presence. The ubiquity of Internet has

continually increased the incidence of exploitation on
the vulnerabilities of computer systems and networks.
Furthermore, the computing environment has shifted
from the traditional centralized computer systems to the

networked information systems (NIS), and
unfortunately, the NIS is subject to frequent intruder
attacks. The current focus of IDS research includes
efficiency (i.e., reducing the computing resources
consumption), accuracy (i.e., design of a „better
intrusion detection algorithm) and coverage (i.e.,
detecting more attack types). These issues are
important; however, an IDS may be attacked first. After

it has been subverted, the system is left defenseless.
Hence, it is important to make an IDS fault tolerant.

This paper is organized as follows: section 2 covers
analysis of existing mechanisms, section 3 covers
results and conclusions of our research.

2. ANALYSIS OF PREVIOUS WORK
A survey on fault tolerance techniques, for IDS, can be
found in [1]. Some surveys on the architecture for
Integrity checking and intrusion tolerant server are there
in [2-5].
Papers on fault tolerance mechanisms for Network
Intrusion Detection System are found in [6-10].
Disabling the intrusion-detection system can happen in

the following ways:

Denial-of-service attacks. Denial-of-service attacks are
a powerful and relatively easy way of temporarily
disabling the intrusion-detection system. The attack can
take place against the detector, by forcing it to process
more information than it can handle (for example by

saturating a network link). This usually has the effect of
delaying detection of the attack or, in the worst case, of
confusing the detector enough so that it misses some
critical element of the attack. A second possibility is to
saturate the reaction capability of the operator handling
the intrusion-detection system. When the operator is
presented with too many alarms, he can easily miss the
important one indicating penetration, even if it is

present on the screen.

Evasion of the detection. Several techniques have
been developed to evade detection of an attack by
intrusion-detection systems. Network-based tools, the
most popular tools today, particularly suffer from these
attacks involving hand-crafted network packets:

1. Attack by IP fragmentation. Intrusion-
detection systems have diffculties reassembling IP
packets. Therefore, splitting an attack artiffcially into
multiple packets creates a mismatch between the data in
the packet and the signature, thus hiding the attack.

2. Attack via the TTL (Time To Live). By
altering the TTL of IP packets, it is possible to make the
intrusion-detection system see packets that will not
arrive at the target of the attack. By inserting fake data

into the communication stream, an attacker can
interleave the attack with bogus information, thus hiding
the attack from the intrusion detection system while the
target correctly reconstructs this attack data and reacts
to it.
Karl N. Levitt & Steven Cheung[1] have given some
common techniques in fault tolerance and security.
These are:

1. Redundancy.
2. Majority voting.
3. Sending packets over multiple communication

paths.
4. Storing critical files in more than one site.
5. Using multiple servers for authentication,

Error detection or correcting codes.

6. Cryptography.
7. Heterogeneity (e.g. N-version programming)

Having heterogeneous hosts and routers
which run different communication protocols;
cost: standardization of protocol and OS.

8. Error containment Access control, firewalls.
9. Detection System Diagnosis (e.g. active

probing for faults) IDS, anomaly and misuse

detection, auditing, testing or monitoring by

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

32

site administrators, virus scanners, integrity
checking.

If the likely faults affect a single protected component,
only then the Redundancy is effective e.g., a processing
element. Moreover, fault masking prevents the fault

from inducing errors that propagate beyond the
component that suffered the fault. There seems to be a
related concept in the security domain. If a computer on
a network is compromised by an attacker, it should be
difficult for him to use this compromised machine as a
base to attack other machines. Access control
mechanisms and firewalls associated with network
components can block or at least limit the spread of
attacks.

Architecture For Integrity Checking:
Integrity represents whether or not an agent has been
modified from its original state This agent could be a
device driver, a kernel security agent (such as a

firewall), a security service (such as VPN), an OS
kernel invariant or any other program. Today‟s
advanced viruses and worms attack software running in
memory to circumvent operating system protections.
Such attacks often disable intrusion detection systems in
order to execute malicious payload.

Y. Peggy Shen, Wei-Tek Tsai, Sourav

Bhattacharya, Ting Liu[3] have proposed a system
architecture to enhance the attack tolerance of IDS
through integrity cheking.
 The System uses the anomaly detection and sandbox
techniques to detect intrusions of the IDS. The anomaly
detection technique first establishes the normal program
behavior (“self ‟), then detects deviation from the
normal program behavior. The definition of self is
defined as finite numbers of sequence of system calls in

the running processes of an application program.
It is a real-time intrusion detection system. It has three
major components the Integrity Checker (IC), the IDS
Monitor (IDM) and the Neighborhood Watcher (NW).

Integrity Checker (IC) - The IC detects unauthorized
modification and replacement of executable and
configuration files. The IC does that by checking these

files periodically. The IC computes 32- bit CRC values
for each executable file and configuration file at the
system initialization time as well as runtime. If any files
are modified or replaced, the runtime computed CRC
values will be different from the original CRC values.
Intrusion Detection Monitor (IDM) -The IDM
monitors the normal program behavior of the IDS
processes/threads, and verifies that the IDS is operating

within the sandbox. IDM sends out the monitoring
results of the previous frame to all the NWs in the
group. If the NW fails to receive the results in a frame,
it increments the strike-counter by one. The strike-
counter is used to accommodate the asynchronous
nature of the NWs,

Neighborhood Watcher (NW) - The NWs are
responsible to monitor IDMs located in the network.

The IDM and NW transmit heartbeat messages to each
other periodically. In other words, they monitor each
other periodically. If the NW detects that the IDM has
been compromised, it sends a warning message to the
security personnel and other NWs.

The advantage of this system is that it can detect
intrusions of IDS as well as itself in a real-time manner.
Architecture enhances the attack tolerance of IDSs. The
architecture is a hybrid of distributed, redundant and
cross-corroborating techniques. The design of the
system is flexible and scaleable.

Gene H. Kim and Eugene H. Spafford[5]

describes the design and implementation of the Tripwire
tool. They analyzed various security tools, and provide a
model for building security tools with similar goals. The
goal of integrity checking tools is to detect and notify
system administrators of changed, added, or deleted
files in some meaningful and useful manner.
Tripwire uses interchangeable “signature” (usually,
message digest) routines to identify changes in files, and

is highly configurable. It uses two inputs: a
configuration describing file systemobjects tomonitor,
and a database of previously-generated signatures
putatively matching the configuration. Selection-masks
(described below) specify file system attributes and
signatures to monitor for the specified items.

Intrusion Tolerant Architecture for

IDS:
Dan Gorton[4] in his thesis work provides an

intrusion tolerant architecture for IDS. The architecture
used is composed of four major components:
Application servers, Tolerance proxies, IDS, and a
Firewall

 The redundant application servers are used to

provide contents to requesting web browsers.
Different hardware, operating systems, and
applications are used to minimize the risk of

all web servers being vulnerable to the same
attack or failure modes.

 The tolerance proxies are then used to provide

a secure front-end to the application servers.
They mediate client requests to one or more
application servers depending on the currently
selected security policy.

 The IDS is used as one part of the monitoring

subsystem

 The firewall is used to minimize the exposure

of the intrusion tolerant system. Only web
requests are allowed to pass through from the
outside.

In the result of his thesis he showed that it is possible to
use different fault tolerant mechanisms, e.g. redundancy
and diversity, to be able to tolerate some degree of

intrusions.

Fault Tolerance Mechanism For IDS:

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

33

Various mechanisms have been proposed for making an
IDS fault tolerant. I have analyzed some of the research
papers published on the area of concern.

Lindonete Siqueira and Zair Abdelouahab[6]
have proposed an adaptive fault tolerance mechanism

for Network Intrusion Detection System based on
Intelligent Agents. Agents collect information related to
hosts by monitoring different systems and using the
collected information the following actions can be
taken:

1. Detect agents which are still active.
2. Detect agents to be replicated.
3. Detect the action of malicious agents.

By using a list of capacities for each agent , and
monitoring the actions that are accomplished by each
agent of the system , malicious agents can be detected.

R.Shashikumar and L.C.S. Gouda[7], provide
a reconfigurable IDS architecture to provide
confidentiality, data integrity, authentication and

nonrepudiation. The architecture was implemented
based on the FPGA hardware. The reconfigurable
hardware unit processes the TCP three way handshakes
and the Server and Client TCP stream reassembly. Five
important states (CLOSED state, SYNSENT state,
SYN-RECV state, ESTABLISHED state and
EXCHANGE state) are examined to build up the proper
TCP three way handshakes needed for the TCP

connection. During the building of the TCP connection,
the control signals “Division”, “Flag-vulnerability” and
“Established” will be the output to the downstream
units. The division signal controls the Converger unit In
this process, attacks such as Stealthyscan and half TCP
connection can be identified.
The autonomous restructuring algorithm is designed to
handle the faults that most frequently occur due to gate
oxide shorts or metal to metal shorts and provides the

feature of self-healing, with built-in autonomous
restructuring units.
The results obtained confirms that the system is fast and
is ideally suited for monitoring high speed networks and
provides improved security to the shared resources on
Internet and Intranet. By parallelizing the tasks of
reassembling TCP packets on the server and the client
on a FPGA the performance of the IDS is greatly

improved.

Pabitra Mohan Khilar, Jitendra Kumar Singh,
Sudipta Mahapatra[8] propose a failure detection
service that uses a heartbeat based testing mechanism to
detect failure and take the advantage of cluster based
architecture to forward the failure report to other cluster
and their respective members.

Failure detection algorithm maintains a heartbeat
receive table for each member node in each clusterhead.
When a heartbeat from a particular member is received,
a new freshness point is calculated using the arrival time
of this heartbeat and previous heartbeat messages and
new timeout period is set equal to this freshness point.

(i) In every heartbeat interval THB each member node
sends a heartbeat message to the clusterhead.
(ii) If heartbeat from a particular member is received
within the timeout period TTM, clusterhead first saves
the arrival time t of this heartbeat message according to

its local clock. Then a new freshness point is calculated
using the arrival time of this heartbeat and previous
heartbeat messages and new timeout period is set equal
to this freshness point.
(iii) If the heartbeat from a particular member is not
received within the timeout period TTM then that node
is considered as failed by the CH. The CH broadcast the
firm failure message containing ID of the node to the

group.
When a gateway node GW receives this message it
forwards this message to the clusterhead of the
neighboring clusters.
Results show that complexity of the message(bandwidth
utilization) increases linearly with the number of nodes.
Local detection time is independent of the number of
nodes. This approach is linearly scalable in terms of

consensus time.

Liwei Kuang, Mohammad Zulkernine[9]
propose an intrusion-tolerant mechanism for network
intrusion detection systems (NIDS) that employ
multiple independent components. The mechanism
monitors the detection units and the hosts on which the
units reside and enables the IDS to survive component

failure due to intrusions. As soon as a failed IDS
component is discovered, a copy of the component is
installed to replace it and the detection service
continues. We implement the intrusion-tolerant
mechanism based on the CSI-KNN-based NIDS and
evaluate the prototype in the face of component failures.
The results demonstrate that the mechanism can
effectively tolerate intrusions.

3. RESULTS AND CONCLUSION
The results of the above analysis can be summarized
based upon the following evaluation criteria used for
fault tolerance:

1. Availability of the resources in the hosts
(memory, disk space, etc.) i.e denial of
service.

2. Reliability i .e. Mean time between break-ins,

covert channel capacity

The most widely used mechanisms for fault tolerance
can be summarized as:

1. Replication Of software agents.

2. Employing Redundancy in processing
elements.

3. Integrity checking for self healing.

4. Using Reconfigurable hardware and
restructuring architectures.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

34

5. Fault detection using Heartbeat messages in
multiagent systems.

The result of the evaluation of the above mechanisms
based upon above criteria is shown in table 1 below:

 Table 1: Evaluation results

Sr.
No.

Mechanisms for
Fault Tolerance

Availability Reliability

1.

2.

3.

4.

5.

Replication Of
software agents.

Employing
Redundancy in
processing
elements.

Integrity checking
for self healing.

Using
Reconfigurable
hardware and
restructuring
architectures.

Fault detection
using Heartbeat
messages in
multiagent
systems

High

Appropriate

High

High

High

High

Low

Appropriate

High

Low

From the above analysis I can conclude that intrusion
detection system (IDS) must be fault tolerant; otherwise,
the intruder may first subvert the IDS then attack the
target system at will and the main requirements for

making an IDS fault tolerant are:

Timeliness - the system shall detect intrusions of IDS

in a timely fashion. Since the IDS protects the computer
systems and networks, a compromised IDS makes the
target system‟s door wide open for intruders. A

compromised IDS needs to be detected and reported
immediately.

Scalability - the system shall be scaleable in the sense
that it should work in a network of few workstations or
hundreds of servers, with few IDSs or hundreds of IDS.

Flexibility - the system shall be flexible. Some IDSs
employ centralized detection algorithms, but some
distributed detection algorithms. Since the system
protects IDSs, thus, it must accommodate both the
centralized and distributed IDSs.

Accuracy - the system shall detect intrusions
accurately. It is essential to reduce the false alarm rate.
When the false alarm is high, the security personnel are

overwhelmed with the false alarms. Worst yet, he or she
must plow through all the false alarms to hunt for
intrusions.

Resilience to Subversion - the system shall resist
subversion. If the system is compromised, then the IDS
is in danger of being attacked. Thus, it is vital that the

system has built in self-protection mechanism.

4. REFERENCES
[1] K.N. Levitt, S. Cheung, "Common Techniques in
Fault-Tolerance and Security," Proc. of the Dependable

Computing for Critical Applications 4, pp. 373-377, 4-6
Jan. 1994,

[2] L. Catuogno, I. Visconti,”A Format-Independent
Architecture for Run-Time Integrity Checking of
Executable Code.” Proc. of the Third International
Conference on Security in Communications Networks,
2002

[3] Shen, Y.P. Tsai, W.-T. Bhattacharya, S. Liu, T,”
Attack Tolerant Enhancement Of Intrusion Detection
Systems.” Proc. 21st Century Military Communications
Conference, Vol 1, pp. 425-429.

[4] Dan Gorton, “Extending Intrusion Detection with
Alert Correlation and Intrusion Tolerance” Masters
Thesis, 2003

[5] G. H. Kim, E. H. Spafford, “The design and
Implementation of Tripwire: A File System Integrity
Checker”. Proc. Conference on Computer and
Communications Security,Vol 2, pp. 18-29, November
1994

[6] Lindonete Siqueira and Zair Abdelouahab,” A Fault

Tolerance Mechanism for Network Intrusion Detection
System based on Intelligent Agents (NIDIA).” Proc.
The Fourth IEEE Workshop on Software Technologies
for Future Embedded and Ubiquitous Systems, and the
Second International Workshop on Collaborative
Computing, Integration, and Assurance (SEUS-
WCCIA'06) , Vol 00, pp. 49-54, 2006

[7] R.Shashikumar and L.C.S. Gouda,” Self-Healing
Reconfigurable FPGA Based Fault Tolerant Security

Model for Shared Internet Resources” IJCSNS
International Journal of Computer Science and Network
Security, VOL.9 No.1, January 2009

[8] Pabitra Mohan Khilar, Jitendra Kumar Singh,
Sudipta Mahapatra,” Design and Evaluation of a Failure
Detection Algorithm for Large Scale Ad Hoc Networks
Using Cluster Based Approach” Proc. 2008

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

35

International Conference on Information Technology ,
Vol 00, pp.153-158, 2008.

[9] Liwei Kuang, Mohammad Zulkernine, “"An
Intrusion-Tolerant Mechanism for Intrusion Detection
Systems," Proc. 2008 Third International Conference on

Availability, Reliability and Security, pp.319-326, 2008.

[10] C. KO, “Execution Monitoring of Security-Critical
Programs In A Distributed System: A specification
Based Approach”, Ph.D. Dissertation, Computer
Science Department, University of California at Davis,
1996.

