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ABSTRACT 
DDoS has become one of the thorniest problems in the Internet, 

and aims to deny legitimate users of the services they should 

have. In this paper, we introduce novel dual - level framework 

that consist of attack detection (D-LAD) and characterization 

scheme for defending against the DDoS attacks. The macroscopic 

level detectors (MaLAD) attempt to detect voluminous 

congestion inducing attacks which cause apparent slowdown in 

network functionality. The macroscopic level characterization 

process identifies these large volumes attacks that have been 

detected early in transit domain by MaLAD. The microscopic 

level detectors (MiLAD) detect sophisticated attacks that cause 

network performance to degrade gracefully and remain 

undetected in transit domain. Microscopic level characterization 

process identifies such attacks that have been detected at border 

routers in stub domain near the victim by Mi-LAD. We employ 

the concepts of change point detection on entropy with time to 

improve the detection rate. Honeypots help achieve high 

detection and filtering accuracy. Use of honeypots is proposed 

that help achieve high detection accuracy.  

We validate the effectiveness of our framework with simulations 

on AT&T topology in ns-2 on a Linux platform. Results 

demonstrate that in addition to being competitive than other 

techniques, our framework works well in the presence of 

different DDoS attacks. The compromise of detection and 

characterization accuracy and time of confirming is a critical 

aspect and proposed technique provides the demanded solution. 

Categories and Subject Descriptors 
C.2.3 [COMPUTER-COMMUNICATION NETWORKS]: 

Network Operations - Network Monitoring; C.2.0 [COMPUTER-

COMMUNICATION NETWORKS]: General-Security and 

protection; C.4 [PERFORMANCE OF SYSTEMS]: 

Measurement Techniques; K.6.5 [Management of Computing and 

Information Systems]: Security and Protection – Unauthorized 

access.  

General Terms 
Security, Performance, Design, Reliability. 

Keywords 
DDoS, Framework, Honeypots, Entropy. 

1.INTRODUCTION 
An ideal DDoS defense system is one that renders any DoS 

attack impossible. Apart from the fact that no system is perfect, a 

proactive prevention system requires too many resources to 

operate and is costly in the absence of attack. Therefore, attack 

detection and characterization are necessary elements of a 

complete DDoS defense system. The DDoS attack detection 

problem consists of designating those points in time at which 

network is experiencing an attack. Only by timely and accurate 

detection of DDoS attacks, system can make proper response to 

escape big loss. The characterization problem consists of 

selecting the true attacks from a set of possible candidate attacks. 

The method should be extensible to a wide variety of attacks. 

Many techniques have been suggested for DDoS attack detection 

and characterization. Most of these techniques have one or more 

limitations. Detecting a DDoS attack is relatively easy at the 

victim network  because it can observe all the attack packets. 

However, attack packets clog a large part of the network before 

converging at victim. Early attack detection schemes  

unfortunately, have to wait for the flooding to become 

widespread, consequently, they are ineffective to fence off the 

DDoS timely. Many of the present DDoS attack detection 

techniques are complex, difficult to deploy or lead to 

computational and memory overheads. 

Our proposed scheme is a hybrid that combines anomaly based 

approach and honeypots in a way that exploits the best features 

of these mechanisms while shielding their limitations. It operates 

on two levels, with macroscopic level detectors (MaLAD) 

detecting and identifying congestion inducing attacks with high 

confidence and microscopic level detectors (MiLAD) identifying 

suspicious flows in presence of honeypots. Unlike earlier 

proposals for attack detection and characterization that are either 

based on unreliable assumptions or too complicated to 

implement, our scheme is simple to understand and implement. It 

is capable of handling infiltrating, sophisticated as well as highly 

distributed attacks. Besides being computationally fast and 

accurate, it adapts to varying network conditions with minimum 

collateral damage. 

The rest of the paper is organized as follows. Section 2 gives the 

related work. Section 3 describes the overall scheme. Section 4 

gives design of dual-level attack detection (D-LAD) scheme. 

Design of dual-level attack characterization is explained in 

section 5. Performance of our proposed scheme is evaluated in 

section 6. Finally section 7 concludes the paper. 

2.RELATED WORK 
For detection and characterization, one can choose between signature based 

techniques  and anomaly based . Signature based techniques  can detect and 

identify only known attacks whereas in anomaly based techniques , it is 

difficult to build accurate profile of legitimate traffic and hence they generate 

high rate of false alarms. Moreover, the Internet traffic is noisy, which makes 

it difficult to extract meaningful information about attacks from any kind of 
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traffic characteristics. Reason for limited success of attempts at 

characterization is that they rely on volume based metrics like , which do not 

provide sufficient information to distinguish attacks and are inaccurate. Some 

of the solutions have achieved impressive levels of accuracy , but all suffer 

from common weakness of themselves being exploited to give rise to DoS 

attacks. 

DDoS attacks are launched from distributed sources. Hence the attack traffic 

is spread across multiple links. As the distance from the victim increases, 

attack traffic is more diffused and harder to detect because the volume of 

attack flows are indistinguishable from legitimate flows. Current schemes for 

early attack detection and characterization are based on identifying 

aggregates causing sustained congestion on communication links, imbalance 

between incoming or outgoing traffic volume on routers  and probabilistic 

packet marking techniques . These methods, unfortunately, have to wait for 

the flooding to become widespread, consequently, they are ineffective to 

fence off the DDoS timely. Moreover, techniques like  lead to severe 

collateral damage as legitimate traffic in the aggregates is also dropped as a 

result of misclassified attacks. Volume based techniques  can identify attack 

accurately but only when they have reached the victim as maximum attack 

traffic is available near victim point for analysis. This poses a major 

challenge for timely and accurate DDoS attack defense. 

3.OVERALL SCHEME 

3.1System Model 
We use transit stub network model of the Internet as shown in figure 1. Every 

domain can be classified as either a stub or a transit network. A stub network 

connects end hosts to the Internet. A transit network interconnects stub 

networks. As for the scenario of a DDoS attack, each of the attackers, 

legitimate users and the victim server are connected to a stub network. The 

traffic usually passes through two stub networks, one on the sender side and 

the other on the victim side, and one or more transit networks. Our aim is to 

protect the victim server and its corresponding network from DDoS attacks.  
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Stub Network 2 

Stub Network 3 

Stub Network 4 

Transit Network 
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Figure 1. Transit-Stub Network for proposed scheme  

3.2Dual-Level Defense Framework 
In the proposed framework, detection algorithms are running on the edge 

routers of transit and stub network. Macroscopic or largest volume of attacks 

is detected early before they enter the victim network. Macroscopic detectors 

on edge routers of transit network consistently detect these attacks and do so 

with a very low false alarm rate. As soon as the attacks are detected at 

macroscopic level, the macroscopic characterization is triggered. Microscopic 

attacks may not necessarily impact the network, but they can have dramatic 

impact on the victim or server. Microscopic detectors located on edge routers 

of stub domain are used for such attacks and trigger microscopic 

characterization as soon as attacks are detected. They enable highly sensitive 

detection. Figure 2 shows the dual level defense scheme. 
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Figure 2. Dual-Level Defense Framework 

Lakhina et al [9] observed that most of traffic anomalies despite their 

diversity share a common characteristic: they induce a change in 

distributional aspects of packet header fields. Our techniques use traffic 

feature distribution to detect DDoS attack. We use entropy as a metric for 

measuring the distribution of traffic features as it exploits inherent feature of 

DDoS attacks, which makes it hard for attacker to counter this detection by 

changing their attack signature. 

We model the Internet to measure the entropy in transit – stub network. 

During an attack, the Internet or IP domain is divided into the two networks; 

one for inside to be protected and the other is for outside where attackers may 

reside. The entropy is measured by recording the dynamics of packets on the 

border of the two networks. Packets flowing between these two networks 

may incur to sustain the current value of the entropy if those packets are in 

harmony with the system or change abruptly if those agitate the system. In 

the proposed system we keep track of the value of entropy in time to pinpoint 

the sudden changes in the value. Those changes are regarded as the 

installation of attacks in the network. 

Since macroscopic attack flows create congestion in the network and stress 

resource utilization in a router and network, they are dropped using “filter” 

rule before they enter the network from an operational standpoint. At 

microscopic level, characterization process is triggered and suspicious flows 

are redirected to honeypots using “redirect” rule, while legitimate flows are 

handled normally using “allow” rule. 

3.3Traffic Feature Selection  
Let an information source have n independent symbols each with probability 

of choice pi. Then the entropy H is defined as: 

                             (1) 

Entropy can be computed on a sample of consecutive packets. The entropy is 

used to calculate the distribution of randomness of some attributes which are 

fields in the network packets‟ headers. In the proposed dual level detection 

algorithms, macroscopic detectors are based on entropy calculated over 

source IP and microscopic detectors are based on entropy calculated over 

destination IP. We assume that any link or network has a characteristic 

distribution of IP addresses for initiators of IP traffic and another probability 

distribution for IP addresses that are the recipients of network traffic. An 

important network event, such as a DDoS attack, should modify these 

distributions of source and destination IP addresses in terms of new IP 

addresses entering the system or certain IP addresses becoming more 

dominant. The Source IP address based entropy fluctuates to some extent 

under normal network conditions. But when the entropy values have 

perceptible changes, attacks are detected. An increase in source IP based 

entropy indicates distributed attacks (according to equation (1), entropy 

becomes maximum when distribution is maximally dispersed) whereas a 
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decrease in source IP based entropy indicates a concentrated attack launched 

from single or a few sources (according to equation (1), entropy becomes 

zero when distribution is maximally concentrated). A single destination IP 

address (or alternatively, a very, very few number of unique destination IP 

addresses) receives many more flows during DDoS. Consequently, a 

decrease in destination IP based entropy detects the presence of DDoS 

attacks. During characterization, both macroscopic and microscopic levels 

make use of source IP address based entropy values to identify the attack 

flows. 

4.DUAL-LEVEL ATTACK DETECTION 

SCHEME 
In this section, the first motivation is to identify DDoS attack packets at early 

stage and eliminate attack packets before they reach the target. The second 

motivation is to counter the attacks which resemble normal network 

accessing patterns and lastly to discriminate DDoS attacks from surge of 

legitimate traffic or flooding. We also aim to keep the false positives and 

false negatives minimum during the process. 

4.1Macroscopic Level Attack Detector 

(MaLAD) 
MaLAD make use of computing entropies based on source IP addresses and 

detect an attack if system entropy crosses threshold limits. If the flows are 

destined to honeypots, attack is confirmed and corresponding attack flows are 

dropped. Thresholds are optimized according to client requirements and 

network conditions. 

4.1.1Sampling and Detection 

Consider a random process , where , a constant 

time interval is called time window, N  is the set of positive integers, and 

for each )(, tXt  is a random variable. Here )(tX  represents the 

number of packet arrivals for a flow in },{ tt . )(tX  As a whole 

represent our empirical histogram for computing entropy. It is found in our 

simulation without attack that Entropy )( XH value varies within very 

narrow limits after slow start phase is over. This variation becomes narrower 

if we increase  i.e. monitoring period. We take average of H(X) and 

designate that as normal Entropy Hn(X). To detect the attack, the entropy 

Hc(X) is calculated in shorter time window continuously, whenever there 

is appreciable deviation from Hn(X), attack is said to be detected. 

We assume that the system is under attack at time ta, which means that all 

attacking sources start emitting packets from this time: the network is in 

normal state for time t<ta and turns into attacked state in time ta. Let td denote 

our estimate on ta.  At time td following event triggers 

 

;trueattack                                 (2) 

Here Ia  where I is set of integers and d  is deviation threshold. 

Tolerance factor or threshold a is a design parameter and d is absolute 

maximum deviation in Entropy H(X) from average value Hn(X) while 

profiling for network without attack. 

We propose an adaptive approach that continually updates the tolerance 

factor a, to reflect changes in background traffic.   By adjusting a baseline, 

estimates can adjust more or less quickly to changes in the background. 

Threshold is decided depending on the network conditions.  

4.1.2Decision of threshold and defense modes 
 
The proposed detection technique operates in one of the following modes as 

shown in fig 3:  

 

 

Figure 3. Naïve, Normal and Best Defense  

Best Defense: The threshold or tolerance factor a is set to low value and 

hence the normal entropy bandwidth during attack detection is very small. 

The choice is made to reduce the false negatives to minimum, and is zero in 

ideal case.  

Normal Defense: The threshold or tolerance factor a is set neither too 

high nor too low. Hence the entropic range that classifies traffic as legitimate 

is moderate, and the false positives and false negatives are balanced. 

Naïve Defense: The threshold or tolerance factor a is set the highest. 

Hence the entropic range that classifies traffic as legitimate is broad, and the 

false alarm rate is low, but detection rate is low, too. Naïve defense has the 

lowest detection sensitivity level and hence it has lowest false positive rate.  

The mode of operation is chosen according to attack strength by varying 

„a‟ so as to minimize false positives and false negatives.   

4.2Microscopic Level Attack Detector 

(MiLAD) 
Distributional changes captured by entropy observed on source IP alone 

cannot detect stealthy and sophisticated attacks that are crafted to match 

statistics of normal traffic. For example, the attackers may simulate the 

normal network behaviors, e.g. pumping the attack packages as Poisson 

distribution, to disable macroscopic detectors. Also, how to discriminate 

DDoS attacks from surge legitimate accessing is a major challenge.  

In order to detect a DDoS attack, we need to test for changes in our detection 

feature over time.  However, our detection feature is a random variable due 

to the stochastic nature of Internet traffic. Consequently, we require a 

mechanism that can accurately discriminate between the onset of a DDoS 

attack and a temporary random fluctuation in traffic. We therefore apply 

cumulative sum (CUSUM) to solve this problem. CUSUM is calculated over 

destination IP address based entropy to detect the attacks. It makes use of the 

concept of time along with threshold to judge the network condition. If the 

abnormal condition persists for a certain period or crosses threshold, attack is 

detected. Destination under attack is identified in case attack is present. 

In our destination IP address entropy based DDoS attack detection method, 

suppose Yn is the destination IP address based system entropy value 
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calculated on edge router of stub at each sampling interval of Δn, and the 

random sequence is extracted as network service random model. In the 

normal occasion this sequence is independent and distributed. Assume the 

variation parameter is the average value of sequence. Before change, this 

value E(Yn) = α. Before attack, when the network is normal, the distribution 

of destination IP addresses is stable, and has certain randomness. But when 

DDoS attack happens on one of the destinations, E(Yn) will become far 

smaller than α. Without losing any statistics properties, we transfer the 

sequence  to another random sequence {Zn} with negative average value.  

Let Z n  = -(Yn - β),                        (3) 

where α = β. In a given network environment, parameter β is a constant used 

for producing a negative random sequence {Zn }, and thus the entire value of 

Zn  will not be cumulated along the time. In our detection algorithm, we 

define that β = α.  When the attack happens, Zn will suddenly become very 

large and positive. The detection threshold is the limit for the positive, which 

is the cumulative value of Zn. 

We use this recursive formula for cumulative sum: 

00S       (4) 

)0,max(1 nnn ZSS                                                                   

where Sn represents the cumulative positive value of Zn . The bigger the Sn , 

the stronger the attack is.  

We calculate the rate of increase of CUSUM value using the following 

formula: 

00C  

Cn = (Cn-1 +1), (Sn >Sn-1)  

       = 0,otherwise                                                                              (5) where Cn 

represents a counter and signifies the duration of increase in Sn. It uses the 

concept of time to judge the network condition. The bigger the Cn, higher the 

probability that there is an attack. 

The judgment function is: 

dn (Sn, Cn ) = 1 , Sn > T OR Cn > T‟                            

       = 0, otherwise                                                             (6) 

where dn (Sn, Cn) is the judgement function at time n, the value 1 shows that 

attack happens, while 0 shows the normal case. T and T‟ are the detection 

thresholds. We can control the total attack detection time by setting the value 

of parameter T‟.  

The advantage of this improved algorithm is that it comprises implicitly a 

concept of process cumulating. The function of cumulating process is to 

avoid false alarm when the network has something abnormal just at a time 

point like a surge of legitimate access. Thus the threshold based approach 

leads to a more real time and timely attack detection. Time based approach 

emphasizes on time tolerance and ignores network anomalies in some 

allowable range. Network is regarded abnormal if threshold is reached or 

tolerable limit defined by time period increases. 

5.DUAL-LEVEL ATTACK 

CHARACTERIZATION SCHEME 
Our algorithm for dual-level characterization and response are based on the 

idea to allow as much traffic as possible into the network that network can 

tolerate, and identify and drop the congestion inducing attack traffic.  

5.1Macroscopic Level Attack Characterization 
In detection phase if Hc(X) is more than normal Hn(X), then suspected 

malicious flows tend to have lower frequency values of packet arrivals and 

the attack is termed as low rate degradation attack. While if Hc(X) is less than 

Hn(X), normal then suspected malicious flows have high values of number of 

packet arrivals and the attack is high rate.   

At the edge router of transit network, we have aggregate of attack flows and 

normal flows. Let F represent set of active flows. Then, 

                                        (7) 

In the above Equation, nF  represent actual normal flows and aF  is set of 

actual attack flows. Our main task in this module is to find 

FfffF ma },...,,{ 21
*

  the set of m malicious flows. Ideally, 

                                (8) 

In the above Equation, 
*

a
F  is the set of flows identified as attacks. Now the 

main problem is to find m:- 

  For distributed low rate attacks, m numbers of least measured packet 

arrival flows constitute 
*

aF  (m number of flows that contribute least 

to system entropy). 

  For concentrated high rate attacks, m number of highest measured 

packet arrival flows form 
*

aF  (m number of flows that contribute 

least to system entropy). 

An estimate of total attack traffic a  is used to compute m and 
*

aF . 

The expected value of attack traffic a  can be determined as follows: 

ntda                               (9) 

In the above Equation, td is the total attack traffic received in 

},{
dd

tt and n  is averaged total traffic. The values of n  is 

calculated by averaging total traffic observed from the time bottleneck link 

utilization is 1 up to time dt .The number of attack flows m.can be 

derived from the following Equation: 

ad

m

j

j
i tX )(

1
                                                                   

(10) 

In the above Equation, i is designated flow, j varying from 1 to m for least or 

highest measured packet arrivals, and )( dtX  represent packet 

arrivals for flow i in next time window after attack is detected. 

The condition given in Equation 10 helps macroscopic-level characterization 

module to segregate m flows, which have either least or highest packet 

arrivals. 

5.2Microscopic Level Attack Characterization 
Though a system may detect the entire set of attack flow i.e. 

aaa
FFF*

 holds true, but in an attempt to do so, some normal 

flows will be misclassified as attacks and na
FF*

 will no longer 

be valid. 

Hence, at macroscopic-level, set of flows identified as attacks 
*

a
F  are 

limited to a subset of a
F  i.e. set of actual attack flows. They are 

essentially congestion inducing part of the entire traffic which must be 

responded to and filtered early in the network. A set of flows  

                  
(11) 

remain unidentified at macroscopic-level and is identified at microscopic-

level as soon as alarm is generated by Mi-LAD. 

As discussed earlier, if there is a decline in system entropy for the destination 

IP based entropy time series on edge router of stub network, attack is 

detected. Victim is identified and the characterization is triggered.  
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5.2.1Identification of Victim 

Let },...,,{ 21 kSSSS  represent a set of servers to be protected 

with  },...,,{ 21 kDDDD  representing destination IP based 

flow id for each server in S. Let  X(t) represents the number of packet arrivals 

for a flow in },{ tt where  is a constant time interval called 

time window. When there is an attack, the destination IP based system 

entropy Yn decreases dramatically, because there is one flow dominating the 

router. The edge router treats dominant flow as victim of DDoS attack. For 

the flow id having highest frequency of packet arrivals and least contribution 

to the destination IP based system entropy, the corresponding server is 

identified as victim of the attack.  

       
(12) 

In the above Equation, k is the number of unique destination IP based flows 

or the number of servers.  

5.2.2Identification of attack flows 
Our proposed microscopic-level characterization technique is based on 

following notion. The attackers or attack tools use same mathematical 

functions to control the speed of attack packets sent to the victim. In an 

attack scenario, an attacker uses a random variable X to control the 

generation speed of attack packets. For example, using a constant speed to 

generate the packets, namely, P{X=C} =1, and C is a constant; increasing the 

number of attack packets according to attack time t, X=a.t+b, a and b are 

constants; simulating the network accessing as Poisson 

process, !}{ kekXP k

, k=0,1… and is a constant; 

and so on. Based on this observation, the different attack flows of a DDoS 

attack share the same regularities, which are different from normal traffic in a 

short time period. 

Following theorem is used to prove there is a regularity during the launch of 

attack provided mathematical functions to control speed of attack is same 

and network is linear and stable during a short time period. 

Theorem:  For random variable X , and ),(XfY  if (.)f  is a 

linear function, then the entropy )()( YHXH  

Proof: 

Suppose X is a discrete variable, and },...,,{
21 n

xxxX , then 

)}(),...,(),({
21 n

xfxfxfY . Because of the mapping 

is a one-to-one mapping, therefore, the possibilities of each pair in the two 

domains are the same, respectively. 

 

Therefore, 

 

The above theorem shows clearly that the entropy of attack packet generation 

speed of each zombie is the same, and it exhibits regularity, if mathematical 

function is the same, although the CPU and the network delay may differ 

among zombies.  

From Equation 7 

 

From Equation 12 

  

Substituting Equation 12 in Equation 7 

(13) 

where, 
*

a
F  is the set of flows identified as attack and filtered at 

macroscopic-level; s
F  is a set of flows identified as suspicious attack 

flows at microscopic-level. Specifically, source IP based flows destined on 

victim that share same or very similar entropy and have minimal variations 

in their source entropy i.e. entropy rate is zero or less than a threshold value, 

are tagged as suspicious attacks and are included in set sF . Any flow in 

set nF  destined to honeypots is tagged as suspicious attack, removed from 

set nF  and included in set sF . 

We maintain a flow list (FL) at the edge router of stub network which is a 

subset of flows from set F. In a time window  

)()( snsn FFFFtFL                                                     

(14) 

where ;; Njjt  is a constant time interval called time 

window. 

Hence the result of the microscopic-level characterization process is recorded 

in FL which contains source IP based flows, with each flow tagged as either 

normal or suspicious  attack. 

Ideally, all the flows in set Fs should be identified during the process of 

microscopic-level characterization. However in practical implementation, we 

assume that no system is perfect and only a subset 
*
sF  of set sF

 is 

identified as suspicious and tagged. A set 
*
ss FF remains unidentified 

and results in FN. Similarly subset 
*

nF of set nF  may be identified as 

normal, with 
*

nn FF resulting in FP. 

6.PERFORMANCE EVALUATION  
This section details out exhaustive experimentation carried out to evaluate 

the performance of the detection and characterization scheme.  

6.1Experiment Design and Procedure 
We simulate a network representative of the structure of the Internet.  For the 

study in this paper, we model the Internet as transit stub network. We choose 

AT&T networking environment and generate its transit-stub model . The 156 

node AT&T topology in figure 4 is quite famous and often used for 

simulations.  

It is composed of interconnected transit and stub domains. The transit domain 

comprises a set of highly connected backbone nodes. Backbone node is either 

connected to several stub domains or other transit domains. Stub domain 

usually has one or more router nodes, which have links to transit domains.  

NS2  topology for AT&T transit stub model has been generated using 

Georgia Tech Internet Topology Generator (GT-ITM)   and extended nam  
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Figure 4. Simulation topology of AT&T transit stub network used in 

our experiments 

Our specific model has 3 core routers, 4 transit nodes with 3 stubs per transit 

and 4 stub nodes, 5 servers and 137 clients (legitimate clients and attackers). 

The topology considered is similar to the one used traditionally to depict a 

typical client-server scenario in the Internet. Transit domain edge routers are 

point of presence (POPs) of the ISP and stub domains are customer domains 

attached to POPs. 

Table 1. provides the basic parameter set for simulation. The links are 

assigned as recommended in  with the following bandwidths and delays:  10 

Mbps bandwidth and 1 ms delay for all inter-stub links (1
st
 level links) and 1 

Mbps bandwidth and 10 ms delay for intra-stub links (2
nd

 level links). For the 

sake of fast simulations, we do not use realistic link capacities (although 

relative values correspond to realistic cases). 

Table 1. Basic Parameters for Simulation 

S.N. Parameter Value 

1. Number of legal sources 15-48 

2.  Number of attackers 1-89 

3.  Backbone link bandwidth 100 Mbps 

4. Backbone link delay 0 sec 

5. Bottleneck link BW 10 Mbps 

6. Bottleneck link delay 1 msec 

7. BW for legitimate clients 1 Mbps 

8. Delay for legitimate clients 10 msec 

9. Server link bandwidth 3 Mbps 

10. Server link delay 1 ms 

11. Mean attacker rate 0.1-3.0 Mbps (low rate) 

3.0 – 6.5 Mbps (moderate rate) 

> 6.5 Mbps  (high rate)  

12. Mean client load 0.1-7.0 Mbps (low rate) 

7.0-9.0 Mbps (moderate rate) 

>9.0 Mbps (high rate) 

Previous studies  have shown that request inter-arrival times follow an 

exponential distribution. Thus, the request arrival process corresponds to a 

Poisson process, where users arrive independently of one another. Number of 

attackers and attack rate are varied to impose different attack load. Each 

simulation experiment has 10 runs (averaged in the graphs). Legitimate 

clients send requests from time 0 to time 30 seconds and attack duration is 

from 8-20 seconds. 

6.2Results and Discussion 

6.2.1Detection of Attack by Ma-LAD 
Figure 5(a) shows entropy profile when network is put under attack. This 

represents DoS and attack is launched with 1 attacker with mean rate varying 

from 3 Mbps to 50 Mbps. In the first time window after the attack is 

launched at 8 seconds, there is a dip in entropy value. The persistent low 

value of entropy reflects that it is a concentrated attack. Similarly, figure 5(b) 

shows entropy profile when our network is put under distributed attack. In 

this case attack is launched with 80 attackers with mean rate varying from 

.05 to 4 Mbps. Positive jump and persistent high value of entropy reflects 

that it is a distributed attack. 

 

Figure 5. (a) Entropy distribution for DoS   (b) DDoS  

6.2.2Sensitivity – Specificity Curve 
At low attack load of .5 Mbps, optimum value of tolerance factor „a‟ varies 

from 6 to 9 (figure 7). At a higher attack load of 5 Mbps, „a‟ varies from 4 to 

6 as shown in figure 8.  However, at a very high attack load with 80 

attackers (figure 9), optimum value varies from 2-4. Hence it is observed 

value of „a‟ decreases with increase in the attack load. 

0

0.2

0.4

0.6

0.8

1

1.2

6 6.5 7 7.5 8 8.5 9

Threshold (a)

Sen
sitiv

ity a
nd 

Spe
cific

aty 20 Attackers
40 Attackers
60 Attackers

 

Figure 7. Sensitivity - Specificity Curve: Attack load .5 Mbps 
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Figure 8. Sensitivity - Specificity Curve: Attack load 5 Mbps 
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Figure 9. Sensitivity - Specificity Curve: 80 attackers 

On the basis of the above observation, we calibrate our macroscopic level 

detector to work in one of the three modes of defense, namely naïve, normal 

and best defense The following table lists the values of tolerance factor „a‟ 

for different modes of operation. 

Table 2 Mapping a to mode of operation 

Mode of Operation Tolerance factor ‘a’ 

Naïve Defense 6 - 9 

Normal Defense 4 - 6 

Best Defense 2 - 4 
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6.2.3Detection of Attack by Mi-LAD 
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Figure 10. Time series entropy          Figure 11. Time series Zn 
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Figure 12. Time series Sn                          Figure 13. Time series Cn 

Figure 10 shows the time series of source IP address based system entropy 

under normal conditions in the absence of attack as well as in the presence of 

sophisticated DDoS attacks. There is a significant overlap between the time 

series of source IP address based system entropy for normal and attack 

conditions which shows that detection of such attacks is not possible based on 

source IP address based entropy alone. In such cases, a significant drop in 

destination domain entropy clearly detects the presence of the attacks as 

shown in the figure.  

Figure 11 shows that in normal condition the sequence of Zn is negative. As 

shown in figure 12, when the attack happens, this cumulative value Sn 

increases rapidly. By setting a threshold T equal to 10 for our network 

environment, when Sn >T, the system detects the attack. Figure 13 shows the 

time series value of counter Cn which judges the persistence of abnormal 

condition in the network over a time period. By setting the threshold T‟ = 5 

for our network environment, when Cn >T‟, we believe that something 

abnormal persisted over network tolerance limit and network is attacked. The 

flash crowds persist for a very small duration and are represented by small 

positive fluctuations that lie below threshold T‟ as shown in the figure. 

Hence, results in figure 13 justify our claim that the approach is able to 

differentiate between DDoS attacks and flash crowds.  

6.2.4Sensitivity of detector to attack detection 
We simulate 10 Mbps legitimate traffic originating from 15 clients picked 

randomly with inter-arrival time of .1 seconds. Attack load is varied from 

100 to .0001 Mbps representing thinning factor from 0 to 1000000 

respectively. DoS attack is launched with single attacker whereas DDoS 

attack is launched with 80 attackers sending attack traffic towards victim. 

Table 3 shows the attack rate in mbps corresponding to various thinning 

factors. 

Our detectors provide a very high detection rate at high rates of attack traffic 

which almost equals to 1. Even at lower rates of attack traffic our detectors 

are very effective for attack detection. Figure 14 shows that high detection 

rates are possible for much lower intensities of attack. For example, a 

detection rate of nearly 98% is possible for DoS and DDoS events 

comprising only 0.90% of the total traffic. When attack traffic comprises .09 

% of total traffic on average, the detection is still effective but to a lesser 

degree. 
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Figure 14. Sensitivity of detector to attack detection 

Table 3 Intensity of DoS and DDoS attacks 

Thinning Factor Attack Rate (Mbps) 

0 100 

10 10 

100 1 

1000 .1 

10000 .01 

100000 .001 

1000000 .0001 

6.2.5Macroscopic Level Characterization 
Two kinds of attacks are simulated. The first attack is simulated with a single 

attacker attacking at a rate of 1 Mbps. Second attack is simulated with 80 

attackers with a mean attack rate of .5 Mbps. Figure 15 shows time series 

entropy of each distinct source IP based flow monitored on edge router of 

transit network. The 
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Figure 15. Time series entropy variation of each distinct source IP 

based flow 

Figure shows that flow 5, 6 and 7 are easily distinguishable from other flows. 

These flows correspond to attack signals. Flows 1 to 4 are noise and 

correspond to legitimate flows. 

In the first case, flow 5 with the least contribution to source IP based system 

entropy and most frequent packet arrivals was identified as attack flows, with 

value of m corresponding to 1.In the second case, the characterization process 

triggered as a result of detection, on simulating 80 attackers with 0.5 Mbps 

attack rate after 8 seconds, alarmed distributed low rate attack and identified 

flow 6 and 7 (up to flow 85 not shown in the Figure) as the attack flows. 

These attack flows are signals with less frequent packet arrivals and hence 

contribute least to the source IP based total system entropy as shown in 

Figure 5.4. However, such flows being large in number increase the total 

system entropy at edge router of transit network. 

6.2.6Microscopic Level Characterization 

We simulated the attack with 10 attackers at rate of 1 Mbps and monitored 

time series entropy of each distinct Source IP based flow destined to server 

118. Figure 16 gives the results of simulation. The set of source IP based 
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flows from 1 to 10 share same entropy space and there are minimal 

variations in their entropy rate. These dominant signals are effortlessly 

identified tagged as suspicious attacks. 
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Figure 16. Time series entropy variations  of each distinct source IP 

based flow destined to the victim (server 118) monitored on edge 

router of stub network ; 10 attackers ;1 Mbps 
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Figure 17 Time series entropy variations of each distinct source IP 

based flow destined to the victim (server 118) monitored on edge 

router of stub network; 20 attackers; 2 Mbps 

Figure 17 shows the results when previous simulation was repeated with 20 

attackers attacking at rate of 2 Mbps. The Figure shows two distinct sets of 

signals for the 20 flows with no variations in the entropy for each set of 

flows. The entropy rate for each flow in both sets becomes zero soon after the 

attack is launched at 8 seconds. This justifies the fact that attacks generated 

by sophisticated attackers using different attack functions can be easily 

identified.  

6.2.7Performance of the overall scheme 
Figure 18 shows the ratio of legitimate and attack packets accepted under 

different strengths of attack. The strength of attack was increased by 

increasing the number of attackers from 1 to 80. The Figure shows that more 

than 90% of the good packets were identified and accepted irrespective of the 

mode of defense. This clearly justifies our claim that collateral damage 

caused in the presence of the proposed responsive measure is much less than 

the damage suffered by legitimate clients in the absence of response, which 

reduced the throughput to zero as soon as attack was launched. There is no 

perceivable decrease in the acceptance rate of legitimate packets even if the 

magnitude of attack increases. Legitimate packets remain unaffected and are 

not dropped because, before congestion inducing attack packets flood the 

network resources and cause legitimate packets to drop, they are filtered at 

macroscopic-level i.e. much early before reaching the victim. 
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Figure 18. Ratio of accepted packets vs. different number of attackers 

for three modes of defense 

Though, the packet acceptance ratio for good packets remains same with 

increasing number of attackers, the bad packet acceptance ratio increases 

with increase in number of attackers and attack strength. The increase is 

highest for naïve defense, because the system is calibrated to reduce false 

alarms and hence reduces the detection rate. Hence some attack flows remain 

undetected and go uncharacterized at macroscopic-level. In case of best 

defense, the system is calibrated for high detection rate and minimum FN. 

Therefore bad packet acceptance ratio decreases almost to zero in case of best 

defense. 

Hence, the simulation results indicate that response prototype blocks 

substantial congestion inducing attack traffic, allowing some of the 

suspicious traffic into the network, that can be further analyzed before taking 

any decision, and hence reduces collateral damage. 

7.CONCLUSIONS 
With the proposed two-fold protection framework, packets with higher 

probability of being valid are offered preferential service, while packets 

which have been marginally classified as invalid or suspicious attack at 

microscopic-level are allowed and directed to honeypots. It drills down to 

investigate suspicious DDoS flows more closely at honeypots at microscopic-

level.  

The results in are encouraging for the use of the framework. We find that 

dual level exposes a lot of anomalies that cannot be detected using volume 

based methods. Many of these DoS and DDoS events are of fundamentally 

different type from those exposed by volume – based methods. Finally, the 

scheme generates relatively few false alarms, as can be tuned to different 

network environments by optimizing the threshold and calibrating the 

detector, and has a high detection rate even when it comprises a small 

fraction of total traffic. 

Future investigations are directed to real time implementation of the scheme 

and extending the scheme to heterogeneous networks. 
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