

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 26

73

Parallel Algorithm for Time Series Based
Forecasting on OTIS-Mesh

Sudhanshu Kumar Jha and Prasanta K. Jana

Senior Member, IEEE

Department of Computer Science and Engineering

Indian School of Mines, Dhanbad 826 004, India

ABSTRACT
Forecasting plays an important role in business,

technology, climate and many others. As an
example, effective forecasting can enable an
organization to reduce lost sales, increase profits and
more efficient production planning. In this paper, we
present a parallel algorithm for short term
forecasting based on a time series model called
weighted moving average. Our algorithm is mapped
on OTIS-mesh, a popular model of optoelectronic
parallel computers. Given m data values and n

window size, it requires)1(5 n electronic moves

+ 4 OTIS moves using n2 processors. Scalability of
the algorithm is also discussed.

Keywords
Parallel algorithm, OTIS-mesh, time series
forecasting, weighted moving average

INTRODUCTION
OTIS-mesh is a popular model of Optical Transpose
Interconnection Systems (OTIS) [1]. In an OTIS-
mesh, n2 processors are organized into n groups
in a two dimensional layout (as shown in Figure 1)

where each group is a nn 2D-mesh. The

processors within each group are connected by
electronic links following mesh topology where as

the processors in two different groups are connected
via optical links following transpose rule discussed
afterwards. Let Gxy denote the group placed in the xth
row and yth column, then we address the processor
placed in the uth row and vth column within Gxy by
(Gxy,Puv). Using transpose rule, (Gxy,Puv) is directly
connected to (Puv, Gxy). In the complexity analysis of
a parallel algorithm on a OTIS model, the electronic

and the optical links are distinguished by counting
the data movement over electronic and the optical
links separately which are termed as electronic
moves and OTIS moves respectively.

In the recent years, OTIS has created a lot of
interests among the researchers. Several parallel
algorithms for various numeric and non-numeric
problems have been developed on different models

G11 G12

G21 G22

Figure 1. OTIS-Mesh network of 2
4

processors.

 P11

P21

P12

 P22

 P11

P21

P12

 P22

 P11

P21

P12

 P22

 P11

P21

P12

 P22

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 26

74

of OTIS including image processing [2], matrix

multiplication [3], basic operations [4], BPC
permutation [5], prefix computation [6], polynomial
interpolation and root finding [7], Enumeration
sorting [8], phylogenetic tree construction [9]
randomized algorithm for routing, selection and
sorting [10].

Among different quantitative forecasting models

available for successful implementation of decision
making systems, time series models are very
popular. In these models, given a set of past
observations, say d1, d2, …, dm, the problem is to

estimate d(m +) through extrapolation, where

(called the lead time) is a small positive integer and
usually set to 1. The observed data values usually
show different patterns, such as constant process,
cyclical and linear trend as shown in Figure 2.
Several models are available for time series

forecasting. However, a particular model may be
effective for a specific pattern of the data, e.g.
moving average is very suitable when the data
exhibits a constant process. Weighted moving
average is a well known time series model for short
term forecasting which is suitable when the data
exhibits a cyclical pattern around a constant trend
[11].

In this paper, we present a parallel algorithm for
short term forecasting which is based on weighted
moving average of time series model and mapped on
OTIS-Mesh. We show that the algorithm

requires)1(5 n electronic moves + 4 OTIS

moves for m size data set and n window size using
n2 processors.

This is important to note that the exponential
weighted moving average is more widely accepted
technique method for short term forecasting than the

(simple) weighted moving average. However, our
motivation to parallelize weighted moving average
with the fact that both the exponential weighted
moving average and the simple moving average
(MA) are the special cases of the weighted moving
average as will be discussed in section 2. Moreover,
in order to find the optimum value of the window
size, it involves O(m) iterations where each iteration

requires O(n2) time for calculating (m – n + 1)
weighted averages for a window size n and m size

data set. This is expensive when the data size is very

large.

Quite a few parallel algorithms have been reported
for short term forecasting. The parallel algorithms
presented in [12] are based on weighted moving
average and shown to implement on a linear array in
m + 1 steps using n processors and on a tree
architecture in (m – n + 2) + log n steps with

(2n – 1) processors. The algorithms have also been
extended to map on a ST-array and ST-tree in

1)1(pnm
p

n

and]log)2[(2 pnm
p

n

steps respectively when only p processors are
available. The systolic algorithm [13] for moving
average was shown to require m - n + 1 steps with
n + 1 processors. To the best of our knowledge, no
other parallel algorithms have been reported for
short term forecasting.

Time

(a) Constant data pattern

Mean

O
b
se

rv
ed

 d
at

a

v
al

u
es

Time

(b) Trend data pattern

O
b
se

rv
ed

 d
at

a

v
al

u
es

Time

(c) Cyclical data pattern

Figure 2. Illustration of different types of

 data pattern

O
b
se

rv
ed

 d
at

a

v
al

u
es

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 26

75

The rest of the paper is organized as follows. Section

2 describes the time series forecasting and the
method of weighted moving average with its special
cases. In section 3, we present our proposed parallel
algorithm followed by the conclusion in section 4.

1. WEIGHTED MOVING AVE-

RAGE TECHNIQUE
For the completeness of the paper, we describe here
the forecasting methodology using weighted moving

average as given in [12]. In this method, for a set of
n data values dt, dt + 1, …, dt – n + 1 and a set of
positive weights w1, w2, …, wn, we calculate their
weighted moving average at time t by the following
formula

)1.2()(
11

1111

www

dwdwdw
tW

nn

nttntnM

where wn ≥ wn -1 ≥ … ≥ w1 ≥ 0. We then use WM (t) to

estimate the forecast value)(ˆ td at time t + ,

i.e.,)()(ˆ tWtd M . The quality of the forecast

depends on the selection of the window size (n).
Therefore, in order to find the optimum value of n,
we calculate m – n + 1 weighted averages for a
specific value of n by sliding the window over the
data values and the corresponding mean square error
(MSE) is also calculated using

)2.2(
)1(

]ˆ[2m

nt

tt

nm

dd
MSE

We then vary the window size (n) to obtain the
corresponding MSE with the newly calculated
weighted moving averages. The same process is
repeated for n = 1, 2, 3, …, m. The value of n for
which MSE is least is chosen for forecasting.

Some Special Cases:

Simple Moving Average: In this method, equal

importance is given to each data value. Hence we
assign equal weight 1/n to all the data values and
obtain the following moving average

)3.2()(121

n

dddd
tS nttttM

As we have discussed in section 1, this method is
best when the data pattern shows a constant process.

Exponential Moving Average: In this method, the
more recent observations are given a larger weight
to face smaller error and thus the weights are
assigned in decreasing order. The formula for
exponential moving average is as follows

where weight wi = α (1 - α)n - i, 1 ≤ i ≤ n and
0 ≤ α ≤ 1. This method is suitable for a cyclical
pattern around a constant trend and is widely
accepted specially for business environment.
However, the method suffers form the proper
selection of the value of the α parameter and there is
no easy method to do it.

3. PROPOSED ALGORITHM

Assume = 1. Then (m – n + 1) weighted moving
averages are obtained form equation (2.1) for a

given window size n along with their error term as
follows

 Weighted Moving Average

)5.2(

)(

)2(

)1(

)(

21

2211

21

24231

21

13221

21

2211

n

mnnmnmM

n

nnM

n

nnM

n

nnM

www

dwdwdw
mW

www

dwdwdw
nW

www

dwdwdw
nW

www

dwdwdw
nW

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 26

76

)7.2(

)6.2(

)1(

)2(

)1(

)(

TermsError

1

2

33

22

11

m

nt

i

M
mm

M
nn

M
nn

M
nn

nm

E
MSE

mWdE

nWdE

nWdE

nWdE

This is easy to note that the sequential
implementation of the above computation requires
O(n2) time. For a different value of n say ni, 1 ≤ i ≤
m, we require to compute different set of (m - ni + 1)
weighted moving averages (as given above) for a
maximum of m iterations. However, our target is to
parallelize the above computation for a single

iteration so that the overall time complexity can be
significantly reduced. The basic idea is as follows.
We initially feed the data values and the weight
vector through the boundary processors. Then using
suitable electronic and OTIS moves, they are stored
in the D and W registers respectively. Next we
calculate their products for each processor in
parallel. The products are then used to form the local
sum in each group which are finally accumulated

using suitable electronic and OTIS moves to
produce weighted moving averages. The algorithm
is now formally described as follows.

Algorithm: Parallel_WMA

Step 1. /* Data Input */

1.1 Feed the data values di’s, 1 ≤ i ≤ m to the
boundary processors in the 1st column position

of each group Gxy, 1 ≤ x, y ≤ n as shown in

Figure 3.

1.2 Feed the weights wj’s, 1 ≤ j ≤ n to the boundary
processors in the 1st row position of the group

G1y, 1 ≤ y ≤ n as shown in Figure 3.

Step 2. /* Data distribution into D-registers */

 Shift the data values row-wise to store them in
D-registers in a pipeline fashion (as data storing
for mesh sort [14]).

Step 3. /* Distribution of weights */

3.1 Perform column-wise broadcast on the weights
fed in step 1.2 and store them in W register.

Illustration 1: Contents of D and W registers after
this step are shown in Figure 4.

3.2 Perform one OTIS move on the contents of W
registers stored in step 3.1.

Figure 4. After row-wise shift of di’s and

column wise broadcast of wj’s.

 d1 d2 d3 d4 d5 d6 d7 d8 d9
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d2 d3 d4 d5 d6 d7 d8 d9 d10
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d3 d4 d5 d6 d7 d8 d9 d10 d11
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d4 d5 d6 d7 d8 d9 d10 d11 d12

 d5 d6 d7 d8 d9 d10 d11 d12 d13

 d6 d7 d8 d9 d10 d11 d12 d13 d14

 d7 d8 d9 d10 d11 d12 d13 d14 d15

 d8 d9 d10 d11 d12 d13 d14 d15 d16

 d9 d10 d11 d12 d13 d14 d15 d16 d17

 d14 d15 d16

d7 d8 d9 d4 d5 d6 d10 d11 d12

d10 d11 d12 d7 d8 d9 d13 d14 d15

d7 d8 d9

d9 d10 d11
d8 d9 d10

d8 d9 d10

d9 d10 d11
d5 d6 d7
d6 d7 d8

d11 d12 d13
d12 d13 d14

d11 d12 d13
d12 d13 d14

 d8d9 d10

d9 d10d11 d15 d16 d17

d4 d5 d6
d5 d6 d7
d6 d7 d8

d1 d2 d3

 w1w2w3

d2 d3 d4
d3 d4 d5

 w4w5w6 w7w8w9

Figure 3. Data input of di’s and wi’s value.

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 26

77

3.3 Perform column-wise broadcast on W register

contents stored in step 3.2.

3.4 Perform OTIS move on W registers.

Illustration 2. The results after step 3.3 and 3.4 are
shown in Figures 5 and 6 respectively.

Remark 1: The distribution of wj’s can be similarly

implemented as the data values di’s by feeding them
in the 1st column position of each group. However, it
would increase the total number of I/O ports.

Step 4.. processors do in parallel

 Form the products with the contents of D
and W registers and store it in C-register.

Step 5. groups do steps 5.1 and 5.2 in parallel

5.1 Sum up the contents of C-registers row-wise and
store the partial sum into C-register of the 1st
column processors of each group.

5.2 Sum up the contents of W-register row-wise and
store the partial sum into W-register of the 1st
column processors of each group.

Illustration 3: The results after this step is shown in

Figure 7 in which
j

iC indicates the ith partial sum of

the jth computation and jW denotes the jth partial

sum of the weights. We also show the detailed

results of
j

iC ’s and jW ’s processor-wise within

each group in Table 1.

Step 6. Perform OTIS move on the contents of

both C and W-registers stored in step 5.

Result is shown in Figure 8.

Step 7. Same as step 5.

Step 8: Perform OTIS move on C and W-

 registers to rearrange them.

Step 9: processors do in parallel

 Divide the content of C-register by the
W-register to store in R-registers

Remark 2: The final results emerge from the R-

registers of processors (Gx1, Pu1), nx1 ,

nu1 .

Time Complexity: Each of the steps 2, 3.1, 3.3, 5,

7, requires 1n electronic moves, steps 3.2, 3.4,

6, 8 require one OTIS moves for each and rest of the

steps are completed in constant time. Therefore, the

Figure 5. After column-wise broadcast of wj’s.

 d1 d2 d3 d4 d5 d6 d7 d8 d9
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d2 d3 d4 d5 d6 d7 d8 d9 d10
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d3 d4 d5 d6 d7 d8 d9 d10 d11
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d4 d5 d6 d7 d8 d9 d10 d11 d12
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d5 d6 d7 d8 d9 d10 d11 d12 d13
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d6 d7 d8 d9 d10 d11 d12 d13 d14
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d7 d8 d9 d10 d11 d12 d13 d14 d15
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d8 d9 d10 d11 d12 d13 d14 d15 d16

 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d9 d10 d11 d12 d13 d14 d15 d16 d17
 w1 w4 w7 w2 w5 w8 w3 w6 w9

Figure 6. After OTIS move on wj’s.

 d1 d2 d3 d4 d5 d6 d7 d8 d9
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d2 d3 d4 d5 d6 d7 d8 d9 d10
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d3 d4 d5 d6 d7 d8 d9 d10 d11
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d4 d5 d6 d7 d8 d9 d10 d11 d12
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d5 d6 d7 d8 d9 d10 d11 d12 d13
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d6 d7 d8 d9 d10 d11 d12 d13 d14
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d7 d8 d9 d10 d11 d12 d13 d14 d15
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d8 d9 d10 d11 d12 d13 d14 d15 d16
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d9 d10 d11 d12 d13 d14 d15 d16 d17
 w1 w2 w3 w4 w5 w6 w7 w8 w9

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 26

78

above algorithm requires)1(5 n electronic moves

+ 4 OTIS moves.

C1
1 C1

2 C1
3 - - - - - -

W1 W2
 W

3

C4
1 C4

2 C4
3 - - - - - -

W1 W2
 W

3

C7
1 C7

2 C7
3 - - - - - -

W1 W2 W3

C2
1 C2

2 C2
3 - - - - - -

W1 W2 W3

C5
1 C5

2 C5
3 - - - - - -

W1 W W3

C8
1 C8

2 C8
3 - - - - - -

W1 W2
 W

3

C3
1 C3

2 C3
3 - - - - - -

W1 W2
 W

3

C6
1 C6

2 C6
3 - - - - - -

W1 W2
 W

3

C9
1 C9

2 C9
3 - - - - - -

W1 W2
 W

3

Figure 8. After one OTIS move.

Table 1. Showing the result after row-wise addition in step 5.

G00

G01

G02

G10

G11

G12

G20

G21

G22

P00

P10

P20

 C1
1 = d1w1 +d2w2 +d3w3 C1

2 = d4w4 +d5w5 +d6w6 C1
3 = d7w7 +d8w8 +d9w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C2

1 = d2w1 +d3w2 +d4w3 C2
2 = d5w4 +d6w5 +d7w6 C2

3 = d8w7 +d9w8 +d10w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C3
1 = d3w1 +d4w2 +d5w3 C3

2 = d6w4 +d7w5 +d8w6 C3
3 = d9w7 +d10w8 +d11w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C4
1 = d4w1 +d5w2 +d6w3 C4

2 = d7w4 +d8w5 +d9w6 C4
3 = d10w7 +d11w8 d12w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C5
1 = d5w1 +d6w2 +d7w3 C5

2 = d8w4 +d9w5 +d10w6 C5
3 = d11w7 +d12w8+d13w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C6
1 = d6w1 +d7w2 +d8w3 C6

2 = d9w4 +d10w5 +d11w C1
3 = d12w7 +d13w8 d14w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C7
1 = d7w1 +d8w2 +d9w3 C7

2 = d10w4 +d11w5 +d12w6 C7
3 = d13w7 +d14w8 d15w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C8
1 = d8w1 +d9w2 +d10w3 C8

2 = d11w4 +d12w5 +d13w6 C8
3 = d14w7 +d15w8 d16w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C9

1 = d9w1 +d10w2 +d11w3 C9
2 = d12w4 +d13w5 +d14w6 C9

3 = d15w7 +d16w8 d17w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

Figure 7. Contents of C and W registers after

step 5.

 C1
1 - - C1

2 - - C1
3 - -

 W1 W2
 W3

 C2
1 - - C2

2 - - C2
3 - -

 W1 W2
 W

3

 C3
1 - - C3

2 - - C3
3 - -

 W1 W2
 W

3

 C4
1 - - C4

2 - - C4
3 - -

 W1 W2
 W3

 C5
1 - - C5

2 - - C5
3 - -

 W1 W2
 W

3

 C6
1 - - C6

2 - - C6
3 - -

 W1 W2
 W

3

 C7
1 - - C7

2 - - C7
3 - -

 W1 W2
 W

3

 C8
1 - - C8

2 - - C8
3 - -

 W1 W2
 W

3

 C9
1 - - C9

2 - - C9
3 - -

 W1 W2
 W

3

©2010 International Journal of Computer Applications (0975 - 8887)
Volume 1 – No. 26

79

Scalability: Now we consider any arbitrary size of

the window to map the above algorithm on a

nn OTIS-mesh. In other words, we consider

the case when the window size is independent of the

number of processors. For the sake of simplicity and
without any loss of generality, let us assume it to be
kn. Note that in this case, the size of the data set will

be 2kn 1. Then we can partition the weight set into

k subsets: {w1, w2, …, wn}, {wn + 1, w2, …, w2n}…,

{w(k 1)n + 1, w(k 1)n + 2, …, wkn}. Accordingly the data

set is also partition into k subsets: {d1, d2, …, dn},

{d2, d3, …, dn + 1}, …,{d2kn - n, d2kn – n + 1, …, d2kn 1}.

Given a subset of the data, its corresponding weight

subset is fed to the nn OTIS-mesh. We then

run the above algorithm (Parallel_WMA) and store
the result temporarily. Next we input another data
subset along with the corresponding weight subset,
execute Parallel_WMA and update the current result
with the previously calculated partial result. This

process is repeated k times to yield the final result.
This is obvious to note that this version of the

algorithm requires)1(5 nk electronic moves +

4k OTIS moves, which is k times more than time
complexity of parallel_WMA.

4. CONCLUSION

In this paper, we have presented a parallel algorithm

for short term forecasting using weighted moving
average technique. The algorithm is mapped on n2-
processor OTIS-mesh. We have shown that it

requires)1(5 n electronic moves + 4 OTIS

moves. The algorithm is also shown to be scalable.

REFERENCES

[1] Zane F., Marchand P., Paturi R. and Esener S.,
2000. Scalable network architectures using the
optical transpose interconnection system
(OTIS), J. of Parallel and Distributed
Computing, 60, 521-538.

[2] Wang C. F. and Sahni S., 2000. Image
processing on the OTIS-Mesh optoelectronic
Computer, IEEE Trans. on Parallel and
Distributed Systems, 11, 97-109.

[3] Wang C. F. and Sahni S., 2001. Matrix

Multiplication on the OTIS-Mesh
Optoelectronic Computer, IEEE Transactions
on Computers, 50(July 2001), 635 – 646.

[4] Wang C. F. and Sahni S., 1998. Basic
operations on the OTIS-Mesh optoelectronic
computer, IEEE Trans. on Parallel and
Distributed Systems 9(Dec. 1998) 1226–1998.

[5] Wang C. F. and Sahni S., 1998. BPC
Permutations on the OTIS-Hypercube,
Optoelectronic Computer, Informatica, 22(3).

[6] Jana P. K. and Sinha B. P., 2006. An Improved
parallel prefix algorithm on OTIS-Mesh,
Parallel Processing Letters, 16, 429-440.

[7] Jana P. K.,2006 Polynomial Interpolation and
Polynomial Root Finding on OTIS-Mesh,
Parallel Computing, 32(4), 301-312.

[8] Lucas K. T. and Jana P. K., 2009. An Efficient
Parallel Sorting Algorithm on OTIS Mesh of
Trees, Proc. IEEE Intl. Advance Computing
Conference , (6-7 March, 2009), Patiala, India,
175-180.

[9] Lucas K. T., Mallick D. K. and Jana P. K.,
2008. Parallel algorithm for conflict graph on
OTIS triangular array, Lecture Notes in
Computer Science, 4904, 274-279.

[10] Rajasekaran S. and Sahni S., 1998.
Randomized routing selection, and sorting on
the OTIS-mesh, IEEE Transaction on Parallel
and Distributed Systems, 9, 833-840.

[11] Wheelwright S. C., and Makridakis S., 1980

Forecasting Methods for Management, John
Wiley and Sons.

[12] Jana P. K., Sinha B. P., 1997. Fast Parallel

Algorithms for Forecasting, Computers Math.
Applic. 34(9) 39-49.

[13] Evans D.J. and Gusev M., 1994. New linear

systolic arrays for digital filters and
convolution, Parallel Computing 20 (1), 29-61.

[14] Nassimi, D., and Sahni, S., 1979. Bitonic sort
on a mesh-connected parallel computer, IEEE
Trans. Comput. C-28(1), 2-7.

http://www.informatik.uni-trier.de/%7Eley/db/journals/informaticaSI/informaticaSI22.html#SahniW98

