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Abstract

The comparison study is drawn between two widely used motif representations i.e. Positional
Weight Matrices (PWM) and Consensus Sequences. In the case of motif finding, where the binding
sites are not known a priori but the algorithm must search a large space of possible binding sites, the
PWM model may be difficult to learn as the search space is very large even for the PWM of short
length (R" for a PWM of length N, where R is the space of real numbers between 0 to 1).
Optimization methods used to search for the best PWM may converge to a local minimum. On the
other hand the consensus sequence has a smaller search space (15" for a motif of length N) which is
easier to search for the global optimum.

Introduction

The control or regulation of gene expression governs how much quantity of a particular protein is
produced in a cell. The regulation is primarily achieved by turning on or off the transcription of genes.
Most protein coding genes are transcribed by RNA polymerase Il. However eukaryotic RNA
polymerase cannot initiate transcription on its own. It requires the assistance of other proteins called
transcription factors for initiating transcription. Any protein that is needed for the initiation of
transcription, but which is not itself a part of RNA polymerase, is called a transcription factor (TF).
Thus TFs play an important role in regulating transcriptional initiation, and hence gene expression.

Many TFs bind to DNA at specific sites, from where they collaborate with RNA Polymerase
and with other TFs. A TF recognizes its specific binding site on DNA by the nucleotide sequence or
pattern. The exact nucleotide sequence that is recognized varies for different TFs. It is of fixed
length, usually ranging between 5-20 bp. A noteworthy feature is the ambiguity of the binding
sequence. A TF can bind to a number of similar looking sequences with different binding affinities.
Some positions in the binding sequence are highly conserved. Base substitutions in these positions
can reduce or completely eliminate the TF binding. Whereas some other positions in the binding
sequence are relatively less conserved and can be mutated without affecting the binding affinity. This
ambiguity is useful as it allows different degrees of interaction with the TF at different DNA sites
according to the binding affinity, which in turn results in different expression levels of various genes
regulated by the same TF.

The nucleotide preferences of a TF at different base positions are described by a motif. A
motif is a model that essentially captures the common features of the binding sequences of a TF.
Many motif representations are available in the literature [references]. However, in practical usage
two motif representations are frequently encountered:

)} Positional weight matrices (PWM) [Stormo et al.], and,
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i) Consensus sequence [Wasserman et al.].

In this study, experiments on a large number of transcription factors have been performed to
study which model can more effectively represent their binding preferences under various situations.
Based on this study, some general conclusions are drawn concerning the suitability of these two
models. The conclusions of this study are meaningful to any bioinformatics study concerning motif
representation or motif finding.

Method

This section describes the methods used in this study to learn and test the different motif
representations. The PWM and consensus representations are described first. Then a description of
the cross-validation experiments performed to estimate the goodness of these two models is given.
The criteria used to evaluate the methods, viz. sensitivity or true positive rate (TPR), false positive rate
(FPR) and receiver-operating characteristics (ROC), are also explained.

The PWM Representation

The positional weight matrix (PWM) [Stormo et al. (1982), Stormo (2000)] is a numerical
representation of the binding preferences of a TF. It records the base preferences at each position of
the binding sequence of the TF. Let the binding sequence of the TF be of length I. The PWM for this

TF is a matrix of dimensions 4xI whose each cell W j records the relative preference or weight of

the base P=ACGET gt the position J=L3- -1 of the binding sequence. For instance
consider the 15 bp long binding sequences of the transcription factor NF-Y shown in Figure 1(a). The

frequency matrix le:fb, j] for these sequences is shown in Figure 1(b), where f, j Is the relative

frequency of base b at position J in the sequences. The positional weight matrix WZ[V\A;] is

shown in Figure 1(c). The weight W ; is calculated as

Wog = In {j:’-'\i"f/p-«’-'}, (1)

where Py is the background frequency of the base b in the genome®.

In{{ £, ,+0.1)/0.25)

In Figure 1(c), the weights w,,; are calculated as where 0.1 is a pseudocount

be{4,C GT)

and p, is assumed to be 0.25 for all considering equal proportion of the bases A,C,Gand T

in the genome.
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Position —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Seq 1 c T T G G C C A A T C A G A A
Seq 2 T T ¢C A G C C A A T C G G A G
Seq 3 c G ¢ G G CcC CcC A AT C A G C G
Seq 4 T T T A G C C A A T C A G C T
Seq 5 c ¢ T G G C C A AT C A G C G
Seq 6 c ¢c ¢ GG GG CcC c A AT C A G C G
Seq 7 G T T A G C C A A T C A G C A
Seq 8 A T C A G C C A A T G A G C T
Seq 9 c ¢c c A G CC A AT C A G A G
Seq 10 ¢ T C A G C C A A T G G G C G
(a)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A 0.1 0 0l 0.6 0 0 0 1 1 0 0l 0.8 0l 0.3 0.2
c 0.6/ 0.3] 0.6 0 0 1 1 0 0 0] 0.8 0 0| 0.7 0
G 0.1] 0.1 0l 0.4 1 0 0 0 0 0| 0.2| 0.2 1 0l 0.6
T 0.2] 0.6] 0.4 0 0 0 0 0 0 1 0 0 0 0] 0.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-0.32] -1.01} -1.01 0.93] -1.01) -1.01] -1.01 1.39 1.39] -1.01] -1.01 1.19] -1.01 0.37 0.09

0.93 0.37 0.93] -1.01] -1.01 1.39 1.39 -1.01] -1.01| -1.01 1.19] -1.01| -1.01 1.07| -1.01

-0.32] -0.32] -1.01 0.60 1.39] -1.01) -1.01} -1.01f -1.01f -1.01 0.09 0.09 1.39] -1.01 0.93

Hl @ o »

0.09 0.93 0.60] -1.01) -1.01) -1.01| -1.01f -1.01f -1.01 1.39] -1.01) -1.01) -1.01}] -1.01 0.09

(c)

Figure 1: A small sample of binding sites for the transcription factor NF-Y.

Given a new sequence, the PWM can be used to evaluate the binding affinity of the TF to this
sequence. The binding affinity is represented by the matrix score. The matrix score of a sequence S
of length | is calculated as

Matrix score =

i
Z[Wsp.i'. - Wmhg\i'.)
J-l
i

. 1(Wm“‘i~i‘ _Wmm,.j)
Iil-

Noel AT T
where WI[V\A,,-] is the PWM of the TF, ¥ (46,67} is the base at position j in the sequence

s, MiN; s the base which has the minimum weight at position j of the PWM, and MaX; s the base
which has the maximum weight at position j of the PWM. The matrix score is a real number within
the range [0,1]. The process of calculating the match score of a sequence S against a given PWM W is
usually referred to as matching the sequence S with W.

If the matrix score for the sequence S exceeds a certain threshold t, the sequence is said to be
a valid binding sequence of the TF. The threshold t is calculated based on p-value which states the
likelihood of obtaining a score higher than t by chance. The p-value is computed with the help of a
background sequence set. The background sequence set represents the average composition of the
genome. It could consist of sequences chosen randomly from the genome, or sequences generated by
a Markov model trained on the genome [reference for RSA tools]. By matching a large number of
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background sequences (~1,000,000 sequences) to the PWM, the chance distribution of the match
score is obtained. The nature of the match score distribution varies according to the PWM, but in
general it resembles the distribution shown in Figure 2. The area under the distribution beyond t gives
the chance probability of obtaining a match score higher than t. This chance probability is the p-value
of the score t. Or stated simply,

_ MNo. of background sequences with match score 2¢

F—valua(i
( ] Total number of background sequences

We choose the threshold t for the PWM corresponding to a standard p-value cutoff of 0.001 or
0.0001.

Distribution of match score
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Figure 2: Match score distribution
The Consensus Representation

The consensus sequence model only specifies the set of valid binding sequences of a TF using a
regular expression or other notations. It does not provide any numerical measure of the binding
affinity. In other words, it only specifies which sequences are bound and which sequences are not
bound by the TF. Two consensus notations are popular. The first notation uses the IUPAC
nomenclature of single letter codes (Figure 3) to represent the allowed bases at any particular position
in a binding sequence. The second notation states the most common (or highest affinity) binding
sequence of the TF and specifies the maximum number of base substitutions that are allowed in the
binding sequence [Pevzner and Sze (2000)]. This notation assumes that all positions are equally
open to base substitution. In this study, we have used the first notation which uses IUPAC
nomenclature, as it is closer to the biological understanding.

There are several ways of generating an IUPAC consensus sequence from the data of known
binding sites of a TF [Day and McMorris (1992)]. For instance in one of the approaches a base is
considered significant at a position if it occurs in any one of the binding sites. In another approach a
base is considered significant at a position only if it occurs in more than 25% of the binding sites
[Daniels and Deininger (1991)]. The former approach is more inclusive while latter approach is
more accurate. We have chosen the latter approach in this study due to its better accuracy. An
illustration of generating the IUPAC consensus sequence in this manner corresponding to the binding
site data of Figure 1(a) is shown in Figure 3.

Given a new sequence, the consensus model can determine by direct comparison with the
consensus sequence whether it is a valid binding sites for the TF.
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Position —

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Seq 1 c T T G G C C A A T C A G A A
Seq 2 T T C A G C C A A T C G G A G
Seq 3 c 6 ¢ G G ¢ Cc A AT C A G C G
Seq 4 T T T A G C C A A T C A G C T
Seq 5 c ¢ T 6 G C CcC A AT C A G C G
Seq 6 c ¢ ¢ G G ¢ CcC A AT C A G C G
Seq 7 G T T A G C C A A T C A G C A
Seq 8 A T C A G C C A A T G A G C T
Seq 9 c ¢c ¢c A G C Cc A AT C A G A G
Seq 10 c T C A G C C A AT G G G C G
Consensus C Y Y R G C C A A T C A G M G

(a)

Symbol A C G T R Y M K
Meaning | A C G T AIG C/IT A/C G/T
Symbol S w H B A\ D N
Meaning | G/C | A/T | AIC/T | G/ICI/T | AIC/G | AIG/T | AIC/GIT

Figure 3: (a) Learning the consensus sequence from a collection of TF binding sequences, (b)
single-letter IUPAC codes for representing degeneracy of nucleotides in a consensus sequence

Cross validation experiments

In this study, the performance of a motif model (PWM or consensus) has been evaluated by
performing cross-validation experiments. The data for this experiment is a set of experimentally
validated TFBSs for a particular TF obtained from TRANSFAC or JASPAR databases. The TFBS
sequences must be of the same length and aligned with respect to each other.

In the K-fold cross validation procedure, the total set of TFBSs is partitioned into K equal
parts. The partitioning is performed randomly. Then K iterations of training and testing are
performed as follows.

In the first iteration, the sequences in parts 1,2,...,(K-1) are together used for learning the motif model.
Then the learnt model is tested on the sequences in part K. During testing, the model is used to
classify each sequence in part K as TFBS or not. If the model is 100% accurate, it must classify all
sequences in part K as TFBSs. However due to the modelling error, some sequences are not classified
as TFBSs. The true positive rate (TPR) or sensitivity of the model is then computed as

TPR = No. of sequences classified as TFBSs / Total no. of sequences tested

Simultaneously, the motif model is also tested on a set of background sequences. The background
sequences are supposed to not contain matches of the motif. However, we may still find matches of
the PWM in the background by random chance. The false positive rate (FPR) of the model is
computed as

FPR = No. of background sequences classified as TFBSs / Total no. of background sequences tested

In the second iteration, the parts 1,2,...,(K-2),K are together used for learning the motif model,
whereas the part (K-1) is used to test the model. Again the TPR and FPR are computed. Similarly, in
the n™ iteration, the parts 1,2,...,(K-n),(K-n+2),...,K are used for learning the motif model, whereas
the part (K-n+1) is used for testing the model.
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After K such iterations, one cross validation experiment is completed. During the course of cross-
validation, the entire data has been used as test set exactly once. Therefore it provides an unbiased
estimate of the model’s performance, i.e., the performance is not biased by the manner in which the
data is partitioned into training and test sets. The TPR and FPR for the cross validation experiment is
the average of the TPR and FPR values obtained over all K iterations.

A special case of K-fold cross-validation is the leave-one-out cross validation (LOOCV). In LOOCV,
a single observation is used as the test data, and the remaining observations as the training data. This
is the same as a K-fold cross-validation with K being equal to the number of observations in the
original sample. The iterations of cross-validation ensure that each observation is used once as the test
data. Leave-one-out cross-validation is computationally expensive, however it is possible in this
problem as the sequence data in this study is limited.

Receiver-operating characteristics

A cross-validation experiment gives an unbiased estimate of the TPR and FPR of TFBS detection by
the motif model. The TPR gives an estimate of how easily the model can detect true matches,
whereas the FPR gives an estimate of how easily the model reports false matches. Ideally one would
like 100% TPR and 0% FPR. However, practically TPR is lower that 100% and FPR is higher that
0%, and the two are related. For example, in the case of a PWM, if the match score threshold is kept
low, both TPR and FPR will be high. On the other hand, if the match score threshold is kept high,
both TPR and FPR will be low. The receiver-operating characteristic (ROC) describes the
relationship between TPR and FPR as the model parameters (such as PWM match score threshold) are
varied. The variation is illustrated in Figure 4. The perfect model yields a point in the upper left
corner (coordinate (0,1)) of the ROC space. Whereas the ROC curve of a completely random model
is the 45° diagonal line. For a better-than-random model, the ROC curve lies somewhere above the
45° diagonal, and the further away this curve is from the diagonal the better the predictor’s
performance. Thus, the area under the ROC curve is an indicator of the model’s performance. In this
paper, the performance of the motif model is studied using the ROC curve and the area under the
ROC curve.

ROC curve
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Figure 4: The Receiver Operating Characteristics (ROC) curve.
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Data

The TFs of several different species from yeast to human are collected from JASPAR
http://jaspar.cgb.ki.se , an open access database for eukaryotic transcription factor binding sites. In
total around 40 TFs are studied for different species. The known sets of binding sites for these TFs
are available in the JASPAR database. Only TFs with a minimum of 10 binding sites were selected
for the evaluation.

To model the performance (FPR), a negative (background) set of sequences of the same species are
also required. These could be modelled by selecting random sequences from the genome. However a
better way is to use random sequences from the Regulatory Sequence Analysis Tool (RSAT) server
(refer http://rsat.ulb.ac.be/rsat/random-seq_form.cgi). RSAT holds pre-computed background for the
whole genomes of several different species in the form of Markov models of orders 1-8. The random
sequences generated by the server using these Markov models are thus representative of the complete
genome on average. 4000 random sequences were collected for each species as the negative
background set in this study.

Results

The performance of both PWM and Consensus is evaluated by plotting the ROC curves of the data
collected from JASPAR. Some significant cases are shown below (here red color signifies PWM and
green color signifies Consensus):

MAOO36(GATAZ) RED -> PWM , GREEN -> Consensus MAD094(Ubx) RED -= PWM , GREEN -> Consensus

1.0 r/ — e —
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“‘%‘0 0.2 0.4 0.6 0.8 1.0
095 0.2 Anl; oro %'at 0.8 1.0 Av. FalsePositive Rate
Figure 5(a) Figure 5(b)

ROC curve for TF GATA2 ( homosapien ) is shown in Figure5(a) and for Ubx (Drosophila ) in
Fig5(b) and in both cases it is observed that PWM performed better.

MAQOGS(Paxc), RED -> PWM GRECN -> Consensus MA0061(NFkappaB) RED -> PWM , GREEN -> Consensus
T ! . 10 i i

O e

0.6

Av. TruePositive Rate

0.2 Beoeie e e . 0.2

0.4 X 0.4 0.6 0.8 10
Av. FalsePositive Rate Av. FalsePositive Rate

Figure 5(c) Figure 5(d)
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ROC curve for TF Pax6 (homosapien) is shown in Figure5(c) and for NFkappaB ( homosapien ) in
Figure5(d) and in both cases similar performance is observed.

The area under the ROC is observed to be high for both models. The dependency of ROC area on the
motif length and the total number of binding sites in both
models can be shown by the following plots.

RED-> PWM GREEN -> CONSENSUS

RED-> PWM GREEN -> CONSENSUS
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Figure 5(e) Figure 5(f)

Plot in Figure5(e) is drawn between Area under ROC curve obtained from various TF’s studied for
PWM and consensus as Y-axis and corresponding motif total number of binding sites as X-axis and
Plot in Figure5(f) has a change of X-axis as Length of the corresponding motif. It is observed from the
scatter plots that both models have performed better but the consensus performance decreased when
the difference between length of the motif and total number of binding sites is very small. e.g. in case
of TF Androgen having 22 length motif with total 24 binding sites i.e. with difference of 2 , the area
under ROC for consensus is found to be 0.18 while for PWM it is 0.84.

CONCLUSION

Both PWM and consensus sequences, are used for representing motifs. Mostly the Transcription
factors with large number of binding sites can be represented better by the PWM while the
Transcription factors with few and small length binding sites can be represented well by the consensus
sequence. For Transcription Factors with large number or small number of binding sites, it is observed
that as the no. of mismatches allowed increases the number of matching binding sites found also
increases. It is an open question which of the two representations should be used in different situations
or applications.
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