
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 20

23

Ontology Driven Software Engineering in Multi-Site

Software Development

Prof. Rashmi Phalnikar
Asst. Prof., IT Department
 MIT COE Pune

Prof. S.D. Joshi
 Prof., Computer Department

BV COE Pune

ABSTRACT

Globalization of software development enables multiple teams

residing in cities and countries to work together in a networked

distributed fashion. However, the diversity between the software

teams, their members, team leaders and managers can give rise

to several practical problems and unidentified issues. The

diversity arises due to lack of face to face communication,

different cultural and educational background and varied

interpretation methods.

Ontology is an explicit specification of a conceptualization.

Ontology drive software engineering offers a direction towards

solving the inter-operability problems brought about by

semantic obstacles, i.e. the obstacles related to the definitions of

business terms and software classes. Ontology engineering is a

set of tasks related to the development of ontology for a

particular domain.

This paper attempts to understand Ontology, how it can benefit

multi site

Index Terms:
Ontology, Software Engineering, Multi site development

Keywords

Keywords are your own designated keywords which can be used

for easy location of the manuscript using any search engines.

1. INTRODUCTION:
The definition of Ontology was originally proposed in 1992 by
Gruber. The body of formally represented knowledge is based
on a conceptualization: the objects, concepts, and other entities
that are assumed to exist in some area of interest and the
relationships that hold among them (Genesereth & Nilsson,
1987). A conceptualization is an abstract, simplified view of the
world that we wish to represent for some purpose. Every
knowledge base, knowledge-based system, or knowledge-level
agent is committed to some conceptualization, explicitly or
implicitly. [1] The term has its root in philosophy, where
Ontology is a systematic account of existence.

Ontology driven Software engineering refers to the different ways in

which ontologies (i.e., formalized conceptual models of real world

domains) contribute to improving Software Engineering – its

processes and its artifacts. It encompasses following

(1) Ontological principles can be used as the basis of improved

development languages;

(2) Ontologies can help improve the way in which software

development projects are organized

(3) Ontological domain models can drive or refine typical
development phases, such as requirements, design and
implementation.

2. Need for Ontology driven Software
Engineering
The vision is informally and incompletely specified and subject

to frequent changes that leads to the Business-IT gap. This gap

makes it difficult for IT to give a reasonable estimate of time

and cost for the project and impacts greatly on the business case.

The inconsistency in presentation, documentation, design and
diagrams could prevent access by other teams or different
approaches to communication and implementation. own
individual guide, and when they communicate, their own
knowledge base and terminology is different from those of
others. Other issues like diagrams with no standard notation can
create chaos in the development life cycle. [1] Therefore, in the
field of Software engineering, Ontology is used to refer to what
exists in a system model. An ontology, in the area of computer
science, represents the effort to formulate an exhaustive and
rigorous conceptual schema within a given domain, typically a
hierarchical data structure containing all the relevant elements
and their relationships and rules (regulations) within the domain.

Ontology-Driven Software Engineering refers to the different
ways in which ontologies (i.e., formalized conceptual models of
real world domains) can contribute to improving Software
Engineering - its processes and its artefacts.

Ontologies have the potential of significantly impacting diverse
aspects of software development. For example:

(1) ontological principles can be used as the basis of improved
development languages;

(2) ontologies can help improve the way in which software
development projects are organized;

(3) ontological domain models can drive or refine typical
development phases, such as requirements, design and
implementation.

Important work is already been carried out by researchers and
practitioners of leading organizations (e.g., by working groups at
the OMG and the W3C).

E.g., consider a banking ontology with a rule that identifies a

customer by its (unique) Customer ID. All applications that

commit to this interpretation of this ontology need to satisfy the

identification rule. Any bank applications that do not foresee a

Customer ID for every customer will not be able to commit or reuse

the banking Ontology. Without such a banking ontology, two

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 20

24

applications would even not be able to communicate (no sharing

of vocabulary and domain rules by two applications).

3. Comparison of Data Modelling, UML
and Ontology Engineering
Unlike data models, the fundamental asset of ontologies is their

relative independence of particular applications, i.e. ontology

consists of relatively generic knowledge that can be reused by

different kinds of applications/tasks. Ontology contains the

vocabulary (terms or labels) and the definition of the concepts

and their relationships for a given domain. Domain rules restrict

the semantics of concepts and conceptual relationships in a

specific conceptualization of a particular application domain.

These rules must be satisfied by all applications that want to use

– or “commit to” an interpretation of – a domain.

A data model, on the contrary, represents the structure and

integrity of the data elements of the, in principle “single”,

specific enterprise application(s) by which it will be used.

Therefore, the conceptualization and the vocabulary of a data

model are not intended a priori to be shared by other

applications [6]

Data modelling in software engineering is the process of
creating a data model by applying formal data model
descriptions using data modelling techniques. Data modelling is
a method used to define and analyze data requirements needed
to support the business processes of an organization.

The data requirements are recorded as a conceptual data model
with associated data definitions. Actual implementation of the
conceptual model is called a logical data model.

UML: Unified Modelling Language (UML) is a standardized
general-purpose modelling language in the field of software
engineering. UML includes a set of graphical notation
techniques to create visual models of software-intensive
systems.UML combines best techniques from data modelling
(entity relationship diagrams), business modelling (work flows),
object modelling, and component modelling. It can be used with
all processes, throughout the software development life cycle,
and across different implementation technologies.

Conceptual (or Ontology) modelling deals with the question on
how to describe in a declarative and abstract way the domain
information of an application, its relevant vocabulary, and how
to constrain the use of the data.

The domain knowledge is separate from instance knowledge.
The instance knowledge varies depending on its use for a
particular project. [5]

4. Web Ontology Language OWL:
The Web Ontology Language (OWL) is a family of knowledge
representation languages for authoring ontologies, and is
endorsed by the World Wide Web Consortium.OWL ontologies
are most commonly serialized using RDF/XML syntax. OWL is
considered evolution of the project by proposing concrete
changes to the ontology.[5] One of the main advantages of OWL
is that it is a declarative language with a formal syntax and
semantics. As such it can be used unambiguously by computer
programs. one of the fundamental technologies underpinning the
Semantic Web, and has attracted both academic and commercial
interest.

The Web Ontology Language, OWL, was developed to facilitate
greater machine interpretability of human knowledge by
providing additional vocabulary along with formal semantics.[5]

There are several ontology languages available such as Resource

Description Framework (RDF) , Web Ontology Language

(OWL), DARPA Agent Markup Language (DAML), Ontology

Interchange Language (OIL), DAML+OIL, Simple HTML

Ontology Extensions (SHOE) etc. for capturing knowledge of

interest. Different ontology languages have different facilities.

The most recent development in standard ontology languages is

OWL from the World Wide Web Consortium (W3C)

(http://www.w3.org/). It has the most complete set of

expressions for capturing the different concepts and

relationships that occur within ontologies; therefore, the

software engineering knowledge is captured in OWL.

A typical application may uses ontology as given in Figure 1. It

may be a wasted effort to express specification and then to

directly add them to the application. OWL will help to express

this declarative language in a formal syntax and semantic. And

hence result in less ambiguity.

Fig. 1: Use Of Ontology
i.OWL Ontologies:

The data described by OWL ontology is interpreted as a set of

"individuals" and a set of "property assertions" which relate

these individuals to each other. OWL ontology consists of a set

of axioms which place constraints on sets of individuals (called

"classes") and the types of relationships permitted between

them. These axioms provide semantics by allowing systems to

infer additional information based on the data explicitly

provided. For example, an ontology describing families might

include axioms stating that a "hasMother" property is only

present between two individuals when "hasParent" is also

present, and individuals of class "HasTypeOBlood" are never

related via "hasParent" to members of the "HasTypeABBlood"

class. If it is stated that the individual Harriet is related via

"hasMother" to the individual Sue, and that Harriet is a member

of the "HasTypeOBlood" class, then it can be inferred that Sue

is not a member of "HasTypeABBlood".

The Web Ontology Language, OWL [5], was developed to
facilitate greater machine interpretability of human knowledge
by providing additional vocabulary along with formal semantics.
The language forms a knowledge continuum between Business
and IT, and provides a mechanism by which the Business can
drive the evolution of the project by proposing concrete changes
to the ontology.[5] One of the main advantages of OWL is that it
is a declarative language with a formal syntax and semantics. As
such it can be used unambiguously by computer programs.

USING ONTOLOGY

Informal

Knowledge

Business

Users

IT

Executable

Logic

Ontology

Formal

Definition

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 20

25

ii. Rules Of Ontology
For knowledge engineering methodology for developing
ontology, there are some fundamental rules in ontology design.
These rules may seem rather dogmatic. However, these rules can
often help in making design decisions:

 There is no one correct way to model a domain – there are
always viable alternatives.

 The best solution almost always depends on the application
that you have in mind and the extensions that you anticipate.

 Ontology development is necessarily an iterative process.

 Concepts in the ontology should be close to objects
(physical or logical) and relationships in your domain of
interest. These are most likely to be nouns (objects) or
verbs (relationships) in sentences that describe your
domain.

A practical example is described in the paper “Ontology Driven
Software Engineering for Real Life Applications” authored by
Michel Vanden Bossche1, Peter Ross2, Ian MacLarty2, Bert
Van Nuffelen1, and Nikolay Pelov1 [5].They have used ODASE
to build a 250 person month e-insurance project for a multi-
national insurance firm, where only 35% of the requirements
were known at kickoff. They required one third of the time of
the next closest quote for the project, and a similar project built
classically at another insurance firm required also around three
times the resources.

Providing more ontology rules, which are important for effective
and meaningful interoperation between applications, may limit
the genericity of ontology. However, light ontologies, i.e.
holding none or few domain rules, are not very effective for
communication between autonomous software agents. Fig. 2
explains the Software Engineering Ontology :

Fig. 2 Software Engineering Ontology

Example of transformation using ontology:
Software engineering ontology instantiations are derived as a
result of populating software engineering project information
and are referred to as ontology instances of software engineering
ontology classes. The transformation process is usually
accomplished by mapping various project data and project
agreement to the concepts defined in the software engineering
ontology.

5. Applications :
Ontology helps in developing a shared understanding across a

project. Ontology represents a consensual, shared description of
the pertinent objects considered as existing in a certain area of
knowledge. They constitute a special kind of software artifact
conveying a certain conception of the world. This is specifically
designed with the purpose of explicitly expressing the intended
meaning of a set of agreed existing objects. The software
engineering ontology defines common sharable software
engineering knowledge including particular project information.
Software engineering ontology typically provides software
engineering concepts – what they are, how they are related, and
can be related to one another – for representing and
communicating over software engineering knowledge and
project information.

6. Benefits:

Ontology in Software Engineering will:

 Provide a source of precisely defined terms that can be
communicated across people, organizations and
applications (information systems or intelligent agents)

 Offer a consensual shared understanding concerning the

domain of discourse

 States explicitly all hidden assumptions concerning the objects
pertaining to a certain domain of knowledge.

 Early feedback to determine the trade-off between delay

and functionality, a key requirement when time-to market
is critical.

 Possible to exploit the same information in different ways.

 Saving on the almost 80% of an IT budget that is spent
doing corrective and adaptive maintenance. As compared
to the increased flexibility which was required for being
able to react quickly to new requests of the Business during
the development

 Identify weaknesses in the model early and consequently
propose new concepts to capture the intended business
meaning.

These concepts facilitate common understanding of software

engineering project information to all the distributed d members

of a development team in a multi-site development environment.

Reaching a consensus of understanding is of benefit benefit in a

distributed multi-site software development environment.

Software engineering knowledge is represented in the software

engineering ontology whose instantiations are undergoing

evolution. Software engineering ontology instantiations signify

project information which is shared and has evolved to reflect

project development, changes in software requirements or in the

design process, to incorporate additional functionality to systems

or to allow incremental improvement.

6. CONCLUSION
In conclusion, the software engineering ontology facilitates

collaboration of remote teams in multi-site distributed software

development. We have explored software engineering

knowledge formed in the software engineering ontology. We

have analyzed instantiations in the software engineering

ontology through the examples. Software engineering ontology

SE Instance

Knowledge

SE Domain

Knowledge

SE SubDomain

Knowledge

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 20

26

assists in defining information for the exchange of project

information and is used in communicating across multisite

development. Its end users are software engineers sharing

domain knowledge as well as instance knowledge of software

engineers.
Recent events such as the WOMSDE (Ontologies and

Metamodeling in Software and Data Engineering) workshop,

ONTOSE (Ontology, Conceptualization and Epistemology for

Software and Systems Engineering) and SWESE (Semantic-

Web Enabled Software Engineering) have focused on ontologies

in software engineering, demonstrating that ontologies are

becoming increasingly important in the area of software

engineering

8. REFERENCES
[1] Software Engineering Ontology for Software

Engineering Knowledge Management in Multi-site

Software Development Environment , Pornpit

Wongthongtham1, Elizabeth Chang1, Ian Sommerville

[2] Development of a Software Engineering Ontology for

Multi-site Software Development Pornpit Wongthongtham,

Elizabeth Chang, Tharam Dillon and Ian Sommerville

[3] Software Engineering Ontology : A development

methodology , Olavo Mendes , Alain Abran

[4] IAENG International Journal of Computer Science,

33:1, IJCS_33_1_4 , ontologies and Object models in

Object Oriented , Software Engineering Dr. Waralak V.

Siricharoen

[5] Ontology Driven Software Engineering for Real Life

Applications Michel Vanden Bossche1, Peter Ross2, Ian

MacLarty2, Bert Van Nuffelen1, and Nikolay Pelov1

[6] Data modelling versus Ontology engineering Peter

Spyns ,Robert Meersman ,Mustafa Jarrar

[7] Bourque, P. SWEBOK Guide Call for Reviewers.

2003 [cited 29 May 2003];

http://serl.cs.colorado.edu/~serl/seworld/database/3552.

html.

