
International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.1, May 2010

109

Component Selection for Component Based Software
Engineering

 Arvinder Kaur Kulvinder Singh Mann
 Student, GNDEC, LDH Assistant Professor, GNDEC, LDH

Abstract
Component selection is not an easy task in Component Based

Software Engineering .and it is very difficult to select
component for CBSE. Component Based Software Engineering
(CBSE) is a concerned with the assembly of pre-existing
software components that leads to a software system that
responds to client-specific requirements. This paper presents an
approach for defining evaluation criteria for reusable software
components. We introduce taxonomy of factors that influence
selection, describe each of them, and present a hierarchical

decomposition method for deriving reuse goals from factors and
formulating the goals into an evaluation criteria hierarchy. It
also presents a summary of the common problems in reusable
off-the-shelf software selection, describes the method .It also
indicates that the evaluated aspects of the method are feasible,
improve the quality and efficiency of reusable software
selection. In this paper the selection of component is done on the
basis of the cost of the component which is calculated on the

basis of the quality attributes of the component. The approach
used for selecting the component is a part of OTSO method that
has been developed for reusable component selection process.

Keywords software reuse, COTS, multiple criteria decision

making, OTSO stands for Off-The-Shelf Option.

1. Introduction
Component-Based Software Engineering (CBSE) is concerned
with composing, selecting and designing components. As the
popularity of this approach and hence number of commercially
available software components grows, selecting a set of

components to satisfy a set of requirements while minimizing
cost is becoming more difficult. In Component-based Software
Engineering (CBSE), the construction of cost-optimal
component systems is not a trivial task. It requires not only to
optimally select components but also to take their interplay into
account. In this paper, the problem of component selection is
described. Informally, the problem is to select a set of
components from available component set which can satisfy a

given set of requirements. The dependencies between the
components must be taken into account. To achieve this goal,
we should assign each component a set of requirements it
satisfies. Each component is assigned a cost which is the overall
cost of acquisition and adaptation of that component. Many
organizations have supported their reuse with component-based
technologies. The increased commercial availability of
embeddable software components, standardization of basic

software environments (such as Microsoft Windows, UNIX),
and the explosive popularity of the Internet has resulted in a new

situation for reusable software consumers: there are many more
accessible reuse candidates. Consequently, many organizations
are spending much time in reusable component selection since
the choice of the appropriate components has a major impact on
the project and resulting product. The component selection

process is not defined so each project finds its own approach to
it. Here a method has been introduce which supports the search,
evolution and selection of reusable software and provides
specific techniques for defining the evolution criteria, comparing
the cost and benefits of alternatives and consolidating the
evolution and selection and benefits of alternatives and
consolidating the evolution results in decision making.

2. Component Selection Problem
Informally, our problem is to select a subset of components
(each of them satisfying a set of functionalities) and to connect
them such that the target component system fulfills the
requirements that need to be satisfied.

2.1 Simple Component Selection Problem (SCSP)
Simple Component Selection Problem (SCSP) is the problem of
choosing a number of components from a set of components

such that their composition satisfies a set of objectives. The
notation used for formally defining SCSP, as laid out in with a
few minor changes to improve appearance is described in the
following.
Consider SR the set of the final system requirements (target
requirements) as
SR = {r1, r2, ..., rn},
and SC the set of components available for selection as

SC = {c1, c2, ..., cm}.
Each component ci can satisfy a subset of the requirements from
SR,
SRci = {ri1, ri2 , ..., rik}.
The goal is to find a set (subset) of components Sol in such a
way that to every requirement rj from the set SR can be assigned
a component ci from Sol where rj is in SRci .
Figure1 describes our component selection problem: from a set

of existing available components SC we need to select a subset
that satisfies a set of objectives SR. We have denoted by ri the
i−th requirement or offered service. In our previous work we
have considered in the composition only the provided services
(as satisfied requirement in the final system) of a component.
We haven’t took under consideration the required services of a
component, only those requirements as dependencies that were
in the set of SR. For example, in the above Figure 1 the final
system computed after selection consists of C1, C3 and C4

components. The r2 requirement of the first and the forth

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.1, May 2010

110

components is satisfied because it is included into the final
solution, but the requirements r7 and r8 of the second and the
fourth components are not satisfied. A more complex situation is
going next to be considered: components required services are
going to be used. As stated above, the requirements r7 and r8 is

going to be considered in our next research work

Figure 1. Component Selection Problem.

2.2 Criteria-based Component Selection Problem

(CCSP)
Criteria Component Selection Problem (CCSP) is the problem of
choosing a number of components from a set of components
such that their composition satisfies a set of objectives and using
various criteria. Another variation of Component Selection
Problem is that stated in. In addition to the above description a
cost of a component ci is considered cost (ci). The goal is to find
a set of components Sol in such a way that to every requirement

rj from the set SR can be assigned a component ci from Sol
where rj is in SRci, while minimizing the number of components

in the solution Sol and/or while minimizing ci ∈ Sol cost(ci).

Another criteria introduced in a previous paper concerns the

dependencies between the involved components. To specify the
component dependencies we have introduced in a dependency
matrix. We are only interested in the provided functionalities
(that are in the set of requirements SR of the final system) of the
components.

3. Evolutionary approaches for the

component selection problem
Evolutionary algorithms are a part of evolutionary computing
which is a rapidly growing area of artificial intelligence.They
are well known suitable approaches for optimization
problems.There are several ways to deal with a multiobjective
optimization problem. We have used both the weighted sum

method and the Pareto dominance principle.The weighted sum
method. Let us consider we have the objective functions f1, f2,. .
. , fn. This method takes each objective function and multiplies it
by a fraction of one, the “weighting coefficient” which is
represented by wi. The modified functions are then added
together to obtain a single cost function, which can easily be
solved using any method which can be applied for single
objective optimization.

The Pareto dominance principle. Consider a maximization
problem. Let x, y be two decision vectors (solutions) from the
definition domain. Solution x dominate y (also written as x _ y)
if and only if the following conditions are fulfilled:

1. fi(x) = fi(y), ∀ i = 1, n;

2. ∃j ∈ {1, 2, , n} : fj(x) > fj(y).

That is, a feasible vector x is Pareto optimal if no feasible vector
y can increase some criterion without causing a simultaneous

decrease in at least one other criterion.In what follows, we
present two evolutionary approaches which use different
representations for the component selection
problem.

4. OTSO Method
The OTSO method was developed to facilitate a systematic,
repeatable and requirements driven COTS selection process. The
main principles of the OTSO method are the following:

a) Explicit definitions of tasks in the selection process,
including entry and exit criteria

b) Incremental, hierarchical and detailed definition of
evaluation criteria

c) A model for comparing the costs and value associated
with each alternative, making them comparable with
each other

d) Use of appropriate decision making methods to
analyze and summarize evaluation results .

The main characteristics of the OTSO method are as follows:
a) A defined, systematic process that covers the whole

reusable component selection process.
b) A method for estimating the relative effort or cost

benefits of different alternatives.
c) A method for comparing the “non-financial” aspects

of alternatives, including situations involving multiple
criteria.

Figure2 shows the main activities in the OTSO reusable
component selection process using a dataflow diagram notation.
Each activity in presented as a process symbol – a circle – and

artifacts produced or used are presented as data storage symbols
in Figure 1. In the search phase, the goal is to identify potential
candidates for further study.The screening phase selects the
most promising candidates for detailed evaluation In the analysis
phase, the results of product evaluations are consolidated .and a
decision about reuse is made. As the selected alternative is used,

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.1, May 2010

111

Figure 2.The main phases in the OTSO process

 the effectiveness of the reuse decision, eventually, can be
assessed. Reuse candidates are evaluated in different ways in all

phases. The OTSO method is based on incremental,
evolutionary definition and use of the evaluation criteria so that
the criteria set can be gradually refined to support each phase.

5. Factors in Reusable Software Selection

The overall relationships among influencing factors, reuse goals
and evaluation criteria are presented in Figure The first main
task in reusable software evaluation is to define the reuse goals.
an organization’s reuse infrastructure and reuse maturity should
also be considered when defining reuse goals. Reuse maturity is

particularly important for the in-house production of reusable
components. Also, if an organization has no experience in OTS
software reuse, it may have a limited ability to integrate OTS
software and to estimate the effort required for OTS software
integration. Application and domain architecture introduce
additional elements that need to be evaluated. The architecture,
in this context, provides a set of constraints deriving from how
particular applications are built: this includes, for instance,

components and design patterns used or assumed,
communication and interface standards, platform characteristics.
The application domain may also have some specific
characteristics that are not addressed by OTS software
developed for other domains (for example, real-time
applications vs. batch processing). Application requirements are
likely to be the most important factor in evaluating reusable

software. Such requirements can include functional
requirements (such as the ability to manage and display
graphical geographical data) and non-functional requirements
(such as available memory or speed of operations). Requirement
specification typically does not define how the system should be

implemented or what components could be implemented
through OTS software. Second, the requirement specification
may not be detailed enough for evaluating OTS software
alternatives. Project objectives and constraints may influence the
library selection through the schedule or the budget of the
project. The availability of features in software reuse candidates
also affects the evaluation criteria definition. This works in two
ways. On one hand, it is important to check that the evaluation

criteria are based on realistic expectations. That is, the criteria
set should not assume characteristics that are not provided by
any OTS software alternative. On the other hand, it may be
useful to know about the possibilities that OTS software
alternatives offer but that may not have been included in the
requirement
Reuse objectives can be divided into development process goals,
maintenance process goals and product characteristics goals.

Development process goals relate to the cost, effort and schedule
of the development project. The maintenance process goals deal
with issues such as the ease or cost of maintenance and who will
be responsible for maintenance. Product characteristics goals
refer to product functionality and product quality.

6. Evaluation Criteria
Classes of evaluation criteria
The factors and goals described in Figure above, determine the

reuse goals for the system. The content and priorities of these
goals determine which characteristics must be considered in the
of the OTS software selection process. The evaluation criteria

themselves can be categorized into four main areas:
(a) Functional requirements

(b) Product quality characteristics
(c) Strategic concerns, and
(d) Domain and architecture compatibility.

Functional requirements: These refer to identifiable,
functional features or characteristics that are specific to the
particular situation. These criteria are derived from the
requirement or design specification and are expressed in the
form of requirements.

Product quality characteristics are common to a broader set of
reuse situations. Typically the structure and relationships of
these characteristics remain the same but their
acceptable values may vary from case to case. Three examples
are:
· Defect rate
· Compliance to the project user interface guidelines
· Clarity of documentation.

Strategic concerns: These are the short-term and the long-term
effects of the reuse candidate, the cost-benefit issues and the
organizational issues beyond the scope of the project in
question. These help to consolidate information for decision
making. Three examples are:

· Acquisition costs
· Effort saved

· Vendor’s future plans.

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.1, May 2010

112

Figure 3: Factors influencing the selection of reusable off-

the-shelf software

Domain and architecture compatibility: Domain compatibility
refers to how well the reuse candidate and its features map into

the domain terminology and concepts. Architecture
compatibility refers to software or hardware architecture
requirements that are common to the application area.

7. Case Studies

We carried out two case studies using the OTSO method. The
results of these case studies are reported separately .The both the

case studies it is assessed the overall feasibility of the method.
The first case study took place in the NASA’s Earth Orbiting
System (EOS) program with Hughes Information Technology
Corporation and were dealing with real software development
projects facing a COTS selection problem. First case study dealt

with the selection of a library that would be used to develop an
interactive, graphical user interface for entering location
information on Earth’s surface areas. This case study used the
OTSO method’s hierarchical and detailed criteria definition
approach. Part of the criteria hierarchy is presented in Figure

4.The main conclusion was that the OTSO method was a
feasible approach in COTS selection and its overhead costs were
marginal. The first case study also showed that OTS package
features can change the application requirements: one of the
OTS alternatives was able to display ocean bathymetry data
graphically. Although this was not initially specified as a
requirement, the application designers considered it a valuable
feature and proposed it to be included in the requirements

specification. This important feedback loop is characterized by
the arrow from the search/screening/evaluation contour in
Figure 2.
Second case study dealt with the component selection based on
the cost and benefit of the component. The costs and benefits
involved in addition of a component are calculated by
evaluating the quality parameters such as cost avoidance,
reliability, productivity, understandability etc. of the

components. The desirability of the component is to be found
the component having higher desirability is to be taken because
it is having higher benefit and having the minimum cost. The
quality parameters can be calculated by following defined
metrics.

Total Cost=

Total cost

avoidnce =

Final cost
avoidnce =

DevelopmaneCo
st =

tempDevelopmaneCost1 = total_count_lines*.8
 *Cost_of_per_lone_code

tempDevelopmaneCost2 = (“total_code_lines”)*
 errorRate* Cost_per_error

Comment Density = totalComments/totalLines;

Understandability =Comment Density

of Code

Producitivity == (effort*24*30)/timeToReUseCode

Of Code

Reliability = basicCompDetail+graphing+
 dataBaseAccess+security+transaction

Cost Of Identifications +Cost Of
Evaluation + Cost Of Integration+

Cost Of Capital

Development_Cost_Avoidance +
Planing_Cost_Avoidnce +

Downtime_Loss_Avoidance

totalCostAvoidance+developmane
Cost;

tempDevelopmaneCost1+tempDevelo

pmaneCost2;

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.1, May 2010

113

TotalBenefit= totalCostAvoidance+
 toatlUnderstandability+totalProductivity
 +totalReliability

Figure 4: Example of a product evaluation criteria hierarchy

Relation between Various Quality Attributes which is to be

defined in the second case study
Following relations between various quality attributes have been

determined by the analysis:

a)Performance α ________1___________________
 Communication between components

 b)Performance α Cohesion α __1__
 Coupling

 c) Ease of Modifiability α 1 α _1
_ Cohesion Coupling

d) Security α _ 1_ __ α Reliability α Cost
 Performance
 e) Fault Tolerance α mean time of failure

f) Fault Tolerance α _____1____ α Cost α morcritical

 Programming Performance
 Elemnets

g) Time α __________1___________________
 COTS products used (in number)

h) COTS product used α __1___
 Cost

8. Conclusions
The OTSO method was developed to consolidate some of the
best practices we have been able to identify for OTS software
selection. our first case study was performed in the application
domain, we have not encountered any domain specific
characteristics that would limit the applicability of the method in
other domains. Also, while the case study them was relatively
small, the evaluation processes, and the resulting criteria, were

quite extensive. This leads us to suggest that the method may be
able to scale up to larger situations as well. However, further
validation is necessary to determine this with more confidence.
From the second case the results which we get after the analysis
of quality attributes of a component i.e. reliability, cost
avoidance, productivity, understandability help us in making
decisions whether any component has to be added into the
system or not. The costs involved in adding a component is

evaluated by taking into consideration cost involved in selection,
identification, evaluation of a component. The results depend on
the quality assurance score which the stake holders have to
decide, basis of which any component is selected. It is noticed
that if the contribution of the component is more towards that
particular software quality attribute and the quality assurance
score of that attribute is more then there is sharp increase in the
desirability of that component.

9. References

1)M. R. Fox, D. C. Brogan, and J. Paul F. Reynolds.
Approximating component selection. In WSC ’04: Proceedings
of the 36th conference on Winter simulation, pages 429–

434.Winter Simulation Conference, 2004.
2) N. Haghpanah, S. Moaven, J. Habibi, M. Kargar, and S.
H.Yeganeh. Approximation algorithms for software component
selection problem. In APSEC, pages 159–166. IEEE Computer
Society, 2007.

International Journal of Computer Applications (0975 – 8887)

Volume 2 – No.1, May 2010

114

3) A. Vescan. Dependencies in component selection problem.In
5th International Workshop on Formal Aspects of Component
Software (submitted). ENTCS, 2008.
4)Y. Kim and O. deWeck. Adaptive weighted-sum method for
bi-objective optimization: Pareto front generation. Structural and

Multidisciplinary Optimization, 29(2):149–158,2005.
5)A. Abraham, L. Jain, and R. Goldberg. Evolutionary
Multiobjective Optimization: Theoretical Advances and
Applications.Springer Verlag, London, 2005.
6) J. Kontio, "OTSO: A Systematic Process for Reusable
Software Component Selection,"CS-TR-3478, 1995. University
of Maryland Technical Reports. University of Maryland.
College Park, MD.

7) J. Kontio, "A Case Study in Applying a Systematic Method
for COTS Selection,"1996. Proceedings of the 18th International
Conference on Software Engineering

8) J. Kontio, S. Chen, K. Limperos, R.Tesoriero, G. Caldiera,
and M. S. Deutsch,"A COTS Selection Method and Experiences
of Its Use," 1995. Proceedings of the 20th Annual Software
Engineering Workshop. NASA. Greenbelt, Maryland.
9) R. Prieto-Díaz, "Implementing faceted classification for

software reuse,"Communications of the ACM, vol. 34,5.1991.
10) C. V. Ramamoorthy, V. Garg, and A.Prakash, "Support for
Reusability in Genesis," pp. 299-305, 1986. Proceedings of
Compsac 86. Chicago.
11) J. W. Hooper and R. O. Chester. "Software Reuse:
Guidelines and Methods," R.A.Demillo (Ed). New York:
Plenum Press,1991.

