Fuzzy BG - Ideals in BG - Algebra

R.Muthuraj
Department of Mathematics
PSNA CET, Dindigul. – 624 622

M.Sridharan
Department of Mathematics
PSNA CET, Dindigul. – 624 622

P.M.Sitharselvam
Department of Mathematics
PSNA CET, Dindigul. – 624 622

Abstract

In this paper, we introduce the concept of fuzzy BG – ideals in BG – Algebra and we have discussed some of their properties.

AMS Subject Classification (2000): 06F35, 03G25.

Keywords

BG-algebra, sub BG - algebra and BG-ideals, fuzzy BG - ideals, fuzzy BG - bi-ideal.

1.Introduction

Y. Imai and K. Iseki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. J. Neggers and H.S.Kim introduced a new notion, called B-algebra. C.B.Kim and H.S.Kim introduced the notion of the BG-algebra which is a generalization of B-algebra. In this paper, we classify the fuzzy BG-ideals in BG-Algebra.

2. Preliminaries

In this section we site the fundamental definitions that will be used in the sequel.

Definition 2.1

A nonempty set X with a constant 0 and a binary operation ' \ast ' is called a BG – Algebra if it satisfies the following axioms.

- $1. \quad x * x = 0,$
- 2. x * 0 = x,
- 3. $(x * y) * (0 * y) = x , \forall x,y \in X.$

Example 2.1

Let $X = \{0,1,2\}$ be the set with the following table.

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Then (X, *, 0) is \overline{a} BG – Algebra.

Definition 2.2

Let S be a non empty subset of a BG -algebra X , then S is called a subalgebra of X if $x * y \in S$, for all $x,y \in S$.

Definition 2.3

Let X be a BG-algebra and I be a subset of X, then I is called a BG-ideal of X if it satisfies following conditions:

- 1. $0 \in I$,
- $2. \quad x * y \in \ I \ \text{and} \ \ y \in \ I \Rightarrow \ x \in \ I,$
- 3. $x \in I \text{ and } y \in X \Rightarrow x * y \in I, I \times X \subseteq I.$

Definition 2.4

A mapping $f \colon X \to Y$ of a BG-algebra is called a homomorphism if $f(x * y) = f(x) * f(y) \ \forall \ x,y \in X$

Remark:

If $f: X \to Y$ is a homomorphism of BG-algebra, then f(0) = 0.

Definition 2.5

Let X be a non-empty set .A fuzzy sub set μ of the set X is a mapping $\mu\,:X\to [0,1]$.

Definition 2.6

A fuzzy set μ in X is said to be a fuzzy BG – bi-ideal if $\mu(x*w*y) \geq \min \ \{ \ \mu(x) \ , \ \mu(y) \} \ \forall \ \ x,y,w \in X \ .$

3. FUZZY SUBALGEBRAS

Definition 3.1

Let $\mu\,$ be a fuzzy set in BG – Algebra. Then $\mu\,$ is called a fuzzy subalgebra of X if

$$\mu(x * y) \ge \min \{ \mu(x), \mu(y) \} \forall x,y \in X.$$

Example 3.1

Let $X = \{0,1,2,3\}$ be the set with the following table.

*	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	2	0	2
3	3	3	3	0

Then (X, *, 0) is a BG – Algebra. Define a fuzzy set $\mu: X \to [0,1]$ by μ $(0) = \mu$ $(1) = t_0$ and μ $(2) = \mu$ $(3) = t_1$ for t_0 , $t_1 \in [0,1]$ with $t_0 > t_1$. Then μ is a fuzzy subalgebra of X.

Definition 3.2

Let μ be a fuzzy set in a set X. For $t \in [0,1]$, the set $\mu_t = \{ x \in X / \mu(x) \ge t \}$ is called a level subset of μ .

4. Fuzzy BG - Ideal

Definition 4.1

A fuzzy set $\boldsymbol{\mu}$ in X is called fuzzy BG – Ideal of X if it satisfies the following inequalities.

- 1. $\mu(0) \ge \mu(x)$,
- $2. \quad \mu\left(x\right) \geq \min\{\; \mu\left(x*y\right), \mu(y)\},$
- 3. $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \} \forall x,y \in X.$

Definition 4.2

Let λ and μ be the fuzzy sets in a set X . The Cartesian product $\lambda \textbf{ X } \mu: X \textbf{ X } \to [0,1]$ is defined by

$$(\lambda \times \mu)(x,y) = \min \{ \lambda(x), \mu(y) \} \forall x,y \in X.$$

Theorem 4.1

If λ and μ are fuzzy BG – Ideals of a BG – algebra X, then $\lambda \times \mu$ is a fuzzy BG – Ideals of $X \times X$.

Proof

For any $(x,y) \in X \times X$, we have

$$(\lambda \times \mu)(0,0) = \min\{ \lambda(0), \mu(0) \}$$

$$\geq \min\{ \lambda(x), \mu(y) \}$$

$$= (\lambda \times \mu) (x,y)$$

That is,
$$(\lambda \times \mu)(0,0) = (\lambda \times \mu)(x,y)$$
.

Let (x_1,x_2) and $(y_1,y_2) \in X \times X$. Then,

$$\begin{split} &(\lambda \boldsymbol{\times} \mu) \ (\ x_1, \ x_2) \\ &= \ \min \ \{ \ \lambda(x_1), \ \mu \ (x_2) \} \\ &\geq \ \min \ \{ \min \{ \ \lambda(x_1 * y_1), \ \lambda \ (y_1) \}, \min \{ \mu(x_2 * y_2), \ \mu \ (y_2) \} \} \\ &= \ \min \ \{ \min \{ \ \lambda(x_1 * y_1), \ \mu(x_2 * y_2) \}, \min \{ \lambda \ (y_1), \ \mu \ (y_2) \} \} \\ &= \ \min \ \{ (\lambda \boldsymbol{\times} \mu) (\ (\ x_1 * y_1, \ x_2 * y_2) \), \ (\lambda \boldsymbol{\times} \mu) (\ y_1, \ y_2) \} \\ &= \ \min \ \{ (\lambda \boldsymbol{\times} \mu) (\ (\ x_1, x_2) * (\ y_1, y_2) \), \ (\lambda \boldsymbol{\times} \mu) (\ y_1, y_2) \} \end{split}$$

That is,

$$(\lambda \times \mu) ((x_1, x_2))$$
= min $\{(\lambda \times \mu)((x_1, x_2) * (y_1, y_2)), (\lambda \times \mu)(y_1, y_2)\}$
and $(\lambda \times \mu)((x_1, x_2) * (y_1, y_2))$
= $(\lambda \times \mu)((x_1 * y_1, x_2 * y_2))$
= min $\{\lambda((x_1 * y_1), \mu((x_2 * y_2))\}$
= min $\{\min((\lambda((x_1), \lambda((y_1))), \min((\mu((x_2), \mu((y_2))))\})\}$
= min $\{\min((\lambda((x_1), \mu((x_2))), \min((\lambda((y_1), \mu((y_2))))\}\})$

$$= \ \min \ \{ (\lambda \times \mu \,) \ (\ x_1, \, x_2) \,, \, (\lambda \times \mu \,) (\ y_1, \, y_2) \}$$

That is, $(\lambda \times \mu)((x_1, x_2) * (y_1, y_2))$

Hence λ X μ is a fuzzy BG – ideal of $\,$ X X $\,$ X.

= min { $(\lambda \times \mu)$ ((x_1,x_2)), $(\lambda \times \mu)((y_1,y_2))$ }

Theorem 4.2

Let λ and $\;\mu\;$ be fuzzy sets in a BG- algebra $\;$ such that $\lambda\times\mu$ is a fuzzy BG- ideal of $\;X\times X.$ Then

- i. Either $\lambda(0) \ge \lambda(x)$ or $\mu(0) \ge \mu(x) \ \forall \ x \in X$.
- ii. If $\lambda(0) \ge \lambda(x) \ \forall \ x \in X$, then either $\mu(0) \ge \lambda(x)$ or $\mu(0) \ge \mu(x)$.
- iii. If $\mu(0) \ge \mu(x) \ \forall \ x \in X$, then either $\lambda(0) \ge \lambda(x)$ or $\lambda(0) \ge \mu(x)$.

Proof

i. Assume $\lambda(x) > \lambda(0)$ and $\mu(y) > \mu(0)$ for some $x, y \in X$.

Then
$$(\lambda \times \mu)(x,y) = \min \{ \lambda(x), \mu(y) \}$$

> $\min \{ \lambda(0), \mu(0) \}$
= $(\lambda \times \mu)(0,0)$

Therefore $(\lambda \times \mu)(x, y) > (\lambda \times \mu)(0, 0), \forall x, y \in X$.

Which is a contradiction to $\lambda \times \mu$ is a fuzzy BG – ideal of $X \times X$.

Therefore either $\lambda(0) \ge \lambda(x)$ or $\mu(0) \ge \mu(x) \ \forall \ x \in X$.

ii. Assume $\mu(0) < \lambda(x)$ and $\mu(0) < \mu(y) \forall x, y \in X$.

Then
$$(\lambda \times \mu) (0,0) = \min \{ \lambda(0), \mu(0) \}$$

= $\mu(0)$.
And $(\lambda \times \mu)(x, y) = \min \{ \lambda(x), \mu(y) \} > \mu(0)$

This implies $(\lambda \times \mu)(x, y) > (\lambda \times \mu)(0, 0)$.

Which is a contradiction to $\lambda \times \mu$ is a fuzzy BG – ideal of $X \times X$.

 $= (\lambda \times \mu)(0,0).$

Hence if If $\lambda(0) \ge \lambda(x) \ \forall \ x \in X$, then either $\mu\left(0\right) \ge \lambda\left(x\right) \text{ or } \mu\left(0\right) \ge \mu\left(x\right)$

iii. This proof is quite similar to (ii).

Theorem 4.3

If λ X μ is a fuzzy BG – ideal of ~X X, then $~\lambda$ or μ is a fuzzy BG – ideal of X.

Proof

Firstly to prove that μ is a fuzzy BG – ideal of X.

Given $\lambda \times \mu$ is a fuzzy BG – ideal of $X \times X$, then by Theorem4.2(i), either λ (0) $\geq \lambda$ (x) or μ (0) $\geq \mu$ (x), $\forall x \in X$. Let μ (0) $\geq \mu$ (x).

By theorem 4.2(iii) then either λ (0) $\geq \lambda$ (x) or λ (0) $\geq \mu$ (x).

Now
$$\mu(x)$$
. = $\min \{\lambda(0), \mu(x)\}$
= $(\lambda \times \mu)(0, x)$
 $\geq \min \{(\lambda \times \mu)((0, x) * (0, y)), (\lambda \times \mu)(0, y)\}$
= $\min \{(\lambda \times \mu)((0 * 0, x * y), (\lambda \times \mu)(0, y)\}$
= $\min \{(\lambda \times \mu)((0 * 0, x * y), (\lambda \times \mu)(0, y)\}$
= $\min \{(\lambda \times \mu)((0 * 0, x * y), (\lambda \times \mu)(0, y)\}$
= $\min \{\mu(x * y), \mu(y)\}$.
That is, $\mu(x) \geq \min \{\mu(x * y), \mu(y)\}$.

$$\mu(x * y) = \min \{\lambda(0), \mu(x * y)\}$$

= $(\lambda \times \mu)(0, x * y)$
= $(\lambda \times \mu)(0 * 0, x * y)$
= $(\lambda \times \mu)((0, x) * (0, y))$

$$\mu(x * y) \geq \min \{(\lambda \times \mu)(0, x), (\lambda \times \mu)(0, y)\}$$

= $\min \{\mu(x), \mu(y)\}$.

That is, $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \}.$

This proves that $\,\mu\,$ is a fuzzy BG-ideal of X.

Secondly to prove that λ is a fuzzy BG – ideal of X.

Given λ \times μ is a fuzzy BG – ideal of X \times X, then by Theorem4.2(i), either λ (0) \geq λ (x) or μ (0) \geq μ (x), \forall $x \in X$. Let λ (0) \geq λ (x)

By theorem 4.2(ii) then either μ (0) $\geq \lambda$ (x) or μ (0) $\geq \mu$ (x).

Now,

$$\begin{split} \lambda \, (x) &= & \min \, \{ \mu \, (0), \, \lambda(x) \} \\ &= & (\lambda \, \times \, \mu)(0, \, x) \\ &\geq & \min \, \{ (\lambda \, \times \, \mu \,)(\, (0, x) * (0, y) \,), \, (\lambda \, \times \, \mu \,)(0, y) \} \\ &= & \min \, \{ (\lambda \, \times \, \mu \,)(\, (0 * 0, \, x * y) \, , \, (\lambda \, \times \, \mu \,)(0, y) \} \\ &= & \min \, \{ (\lambda \, \times \, \mu \,)(\, (0, \, x * y) \, , \, (\lambda \, \times \, \mu \,)(0, y) \} \end{split}$$

$$= \min \{ (\lambda \times \mu) ((0 * 0, x * y), (\lambda \times \mu) (0, y) \}$$

$$= \min \{ \lambda (x * y), \lambda (y) \}$$
That is, $\lambda (x) \ge \min \{ \lambda (x * y), \lambda (y) \}.$

$$\lambda (x * y) = \min \{ \mu(0), \lambda (x * y) \}$$

$$= (\lambda \times \mu) (0, x * y)$$

$$= (\lambda \times \mu) (0 * 0, x * y)$$

$$= (\lambda \times \mu) ((0, x) * (0, y))$$

$$\lambda (x * y) \ge \min \{ (\lambda \times \mu) (0, x), (\lambda \times \mu) (0, y) \}$$

$$= \min \{ \lambda (x), \lambda (y) \}$$

That is, $\lambda(x * y) \ge \min \{ \lambda(x), \lambda(y) \}.$

This proves that λ is a fuzzy BG-ideal of X.

Theorem 4.4

If μ is a fuzzy BG-ideal of ~X, then μ_t is a BG-ideal of X for all $t\in [~0~,~1~].$

Proof:

Let μ be a fuzzy BG – ideal of X. Then

1. μ (0) $\geq \mu$ (x),

2. $\mu(x) \ge \min\{ \mu(x * y), \mu(y) \},$

3. $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \} \forall x,y \in X.$

To prove that μ_t is a BG – ideal of X

We know that $\mu_t = \{ x / \mu(x) \ge t \}$

Let $x, y \in \mu_t$ and μ is a fuzzy BG – ideal of X.

Since $\mu(0) \ge \mu(x) \ge t$ Implies $0 \in \mu_t$, $\forall t \in [0, 1]$.

Let $x * y \in \mu_t$ and $y \in \mu_t$

Therefore, $\mu(x * y) \ge t$ and $\mu(y) \ge t$.

Now $\mu(x) \ge \min\{ \mu(x * y), \mu(y) \} \ge \min\{ t, t \} \ge t$.

Hence $\mu(x) \ge t$.

That is , $x \in \mu_t$.

Let $x \in \mu_t$, $y \in X$.

Choose y in X such that $\mu(y) \ge t$.

Since $x \in \mu_t$ implies $\mu(x) \ge t$.

We know that $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \}$

 $\geq \min\{t,t\}\geq t$.

That is, $\mu(x * y) \ge t \text{ implies } x * y \in \mu_t$.

Hence μ_t is a BG – ideal of X.

Theorem 4.5

If X be a BG – algebra, \forall t \in [0, 1], and μ_t is a BG - ideal of X, then μ is a fuzzy BG – ideal of X.

Proof:

Since μ_t is a BG - ideal of X.

i.
$$0 \in \mu_t$$
,

ii. $x * y \in \mu_t$ and $y \in \mu_t$ implies $x \in \mu_t$,

iii. $x \in \mu_t \ y \in X \text{ implies } x * y \in \mu_t$.

To prove that μ is a fuzzy BG – ideal of X.

i. Let $x, y \in \mu_t$ then $\mu(x) \ge t$ and $\mu(y) \ge t$.

Let $\mu\left(x\right)=t_{1}$ and $\mu\left(y\right)=t_{2}$, without loss of generality let $t_{1}\!\leq\!t_{2}$

Then $x \in \mu_{t1}$.

Now $x \in \mu_{t1}$ and $y \in X$ implies $x * y \in \mu_{t1}$.

That is ,
$$\mu (x * y) \ge t_1$$

 $= \min \{ t_1, t_2 \}$
 $= \min \{ \mu (x), \mu (y) \}.$
That is , $\mu (x * y) \ge \min \{ \mu (x), \mu (y) \}.$

ii. Let
$$\mu$$
 (0) = μ (x*x)
 \geq min { μ (x) , μ (x)} (by proof (i))
 \geq μ (x).

$$\begin{array}{lll} \text{That is , } \; \mu \left(0 \right) \; \geq \; \; \mu \left(x \right) \; \forall \; \; x \in X \; . \\ \\ \text{iii. Let } \; \mu \left(x \right) \; = \; \; \mu \left(\; \left(x \; * \; y \right) * \left(0 \; * \; y \; \right) \; \right) \\ \\ \; \geq \; \; \min \left\{ \; \mu \; \left(x \; * \; y \right) \; , \; \mu \left(0 \; * \; y \; \right) \; \right\} \left(\text{by (i)} \right) \\ \\ \; \geq \; \; \min \left\{ \; \mu \; \left(x \; * \; y \right) \; , \; \mu \left(y \right) \; \right\} \left(\; \text{by (ii)} \right) . \\ \\ \; \mu \left(x \right) \; & \geq \; \min \left\{ \; \mu \; \left(x \; * \; y \right) \; , \; \mu \left(y \right) \; \right\} . \end{array}$$

Hence μ is a fuzzy BG – ideal of X.

Theorem 4.6

Every fuzzy BG – ideal is a fuzzy BG – bi-ideal.

Proof

It is trivial.

Remark:

Converse of the above theorem is not true. That is every fuzzy BG-bi –ideal is not fuzzy BG-ideal. Let us prove this by an example.

Example:

Let $X = \{0,1,2\}$ be the set with the following table.

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Then (X, *, 0) is a BG – Algebra.

We define a fuzzy set
$$\mu: X \to [0,1]$$
 by $\mu(0) = 0.8$ and
$$\mu(x) = 0.2 \ \forall \ x \neq 0.$$

Clearly μ is fuzzy BG-ideal of X . But μ is not a BG-bi-ideal of X .

For, Let
$$x = 0$$
, $w = 1$, $y = 0$. Then

$$\mu(x * w * y) = \mu (0 * 1 * 0) = \mu(0 * 1) = \mu(1) = 0.02.$$

$$\min \ \{ \ \mu(x), \ \mu(y) \ \} \quad = \quad \min \ \{ \ \mu(0), \ \mu(0) \ \} = \mu(0) = 0.8.$$

Hence
$$\mu(x * w * y) \leq \min \{ \mu(x), \mu(y) \}.$$

Hence μ is not a fuzzy BG – bi-ideal of X.

Definition 4.3

Let $f: X \rightarrow Y$ be a mapping of BG –algebra and μ be a fuzzy set of Y then μ^f is the pre-image of μ under f if $\mu^f(x) = \mu$ $(f(x)) \ \forall \ x \in X$.

Theorem 4.7

Let $f: X \rightarrow Y$ be a homomorphism of BG – algebra if μ is a fuzzy BG – ideal of Y then μ^f is a fuzzy BG – ideal of X.

Proof

For any $x \in X$, we have

$$\mu^{f}(x) = \mu(f(x)) \le \mu(0) = \mu(f(0)) = \mu^{f}(0)$$

Let $x, y \in X$, then

$$\begin{split} \min \; \{ \; \mu^f \, (x * y), \, \mu^f \, (\; y) \} \; &= \quad \min \; \{ \mu \, (f \, (x * y)) \; , \, \mu \, (f \, (y)) \; \} \\ \\ &= \quad \min \; \{ \; \mu \, (f(x) * f(y)) \; , \, \mu \, (f \, (y)) \} \\ \\ &\leq \quad \mu \, (f \, (x)) \\ \\ &= \quad \mu^f \, (x) \end{split}$$

$$\begin{array}{lll} \text{That is , } & \mu^f\left(x\right) & \geq & \min \; \{ \; \mu^f\left(x * y\right), \mu^f\left(\; y\right) \} \\ \\ & \min \; \{ \mu^f\left(x\right), \mu^f\left(\; y\right) \; \} \; = & \min \{ \mu \left(f\left(x\right)\right), \mu \left(f\left(y\right)\right) \; \} \\ \\ & \leq & \mu \left(f\left(x\right) * f\left(y\right)\right) \\ \\ & = & \mu \left(f\left(x * y\right)\right) \\ \\ & = & \mu^f\left(\; x * y\right) \end{array}$$

That is,
$$\mu^f(x * y) \ge \min \{\mu^f(x), \mu^f(y)\}$$

Hence μ^f is a fuzzy BG – ideal of X.

Theorem 4.8

Let $f: X \rightarrow Y$ be an epimorphism of BG – algebra. If μ^f is a fuzzy BG – ideal of X, then μ is a fuzzy BG – ideal of Y.

Proof

Let
$$y \in Y$$
, $\exists x \in X$ such that $f(x) = y$,

Then
$$\mu \ (y) = \mu(f(x))$$

$$= \mu^f(x)$$

$$\leq \mu^f \ (0)$$

$$= \mu \ (f(0)) = \mu \ (0).$$

Again let $x, y \in Y$ then $\exists a, b \in X$ such that

$$f(a) = x$$
 and $f(b) = y$.

It follows that
$$\mu(x) = \mu(f(a))$$

 $= \mu^f(a)$
 $\geq \min \{ \mu^f(a * b), \mu^f(b) \}$
 $= \min \{ \mu(f(a * b), \mu(f(b)) \}$
 $= \min \{ \mu(f(a)*f(b)), \mu(f(b)) \}$
 $= \min \{ \mu(x * y), \mu(y) \}.$

That is,
$$\mu(x) \ge \min \{ \mu(x * y), \mu(y) \}.$$

and $\mu(x * y) = \mu(f(a) * f(b))$
 $= \mu(f(a * b))$
 $= \mu^f(a * b)$
 $\ge \min \{ \mu^f(a), \mu^f(b) \}$
 $= \min \{ \mu(f(a), \mu(f(b)) \}$
 $= \min \{ \mu(x), \mu(y) \}$

Hence $\mu(x * y) \ge \min \{ \mu(x), \mu(y) \}.$

Hence μ is fuzzy BG – ideal of Y.

References

- [1] S.S.Ahn and D. Lee, Fuzzy subalgebras of BG algebras, Commun. Korean Math.Soc, 19 (2004), No2, 243 – 251.
- [2] M.Akram and K.H.Dar, On Fuzzy d- algebras, Journal of mathematics, Vol.37 (2005) 61-76 .
- [3] Y.B. Jun, E.H.Roh and H.S.Kim, On BH algebras, sci. mathematica, 1 (1998), 347 354.
- [4] Neggers and H.S.Kim, On B- Algebras, Math, Vensik, 54 (2002), 21-29.
- [5] Neggers and H.S.Kim, On d- Algebras, Math, Slovaca, 49 (1999), 19-26.
- [6] A.Borumand Saeid , Fuzzy Topological BG-algebras, Int.J.math. (to appear).
- [7] Q.P.Hu and X.Li , On BCH-algebras , Mathematics Seminar notes 11 (1983), 313-320.