Utilization of resources are difficult in a heterogeneous, dynamic environment, like Cloud computing, where resources are accessed and analyzed in real time. Sometimes, it is also needed to adapt to the changing resource usage scenario in order to maintain the desired QoS. We observe that the existing infrastructure of modern civilization is based on some resources accessing and their utilization properly like different utility services, which are pay per user basic. As for example, the utility services like water, gas, electricity etc are chargeable per user. Similarly, the agenda of cloud computing is to provide on demand IT resources on pay per user basis. These IT resources consist of different web services. Accessing and scheduling these web services is always a challenging job. This paper proposes a multistage mathematical model based on ant system, for proper utilization of these web services. Results of the implementation are presented in order to demonstrate the effectiveness of the mathematical model.
Spain, 1998
 - S. Adreozzi, P. Ciancarini, D. Montesi, R. Moretti, "Towards a model for quality of web
 and grid service" In Proc 13th IEEE international Workshops on Enabling Technologies:
 Infrastructure for Collaborative Enterprises (WET ICE'04) page 271-276, 2004
 - D. Gouscos, M. Kalikakis, and P. Georgiadis, "An approach to modeling Web service
 QoS and provision price ", in Proceeding 3rd International Conference on Web Information
 Systems Engineering Workshops, pages 121-130, 2003
 - J.P Thomas, M. Thomas and G. Ghinea "Modeling of Web service flow ", in Proceeding
 IEEE International Conference on E-Commerce (CEC 03) , pages 391-398, 2003
 - S. Tu, M. Flanagan Y. Wu, M. Abdelguerfi, E. Normand, V. Mahadevan, "Design
 Strategies to improve performance of GISWeb services", in Proceeding International Conference
 on Information Technology : Coding and Computing(ITCC04), pages 444-448, 2004
 Performance management for cluster based Web services", in Proceeding IFIP / IEEE 8th
 - Fahringer, T., Gerndt, M., Riley, G.D., and Traiff, J. L., "Formalizing OpenMP
 on High Performance Computing (October 16-18, 2000), ISHPC, pp. 428-439
 - Foster I., C. Kesselman, J. Nick, and S. Tuecke, "Grid Services for Distributed
 System Integration", IEEE Computer, pp. 37-46, June 2002
 - Furlinger K., "Scalable Automated Online Performance Analysis of Applications
 using Performance Properties", PhD. Thesis, 2006 in Technical University of Munich,
 Germany
 - Furlinger K., M. Gerndt, "A Lightweight Dynamic Application Monitor for SMP
 - Furmento N., A. Mayer, S. McGough, S. Newhouse, T. field, and J. Darlington,
 "ICENI: Optimization of Component Applications within a Grid environment", Parallel
 Computing, 28(12): 1753-1772, 2002
 - Globus Toolkit 4.0 - available in www.globus.org/toolkit
 - Kennedy K., et al, "Toward a Framework for Preparing and Executing Adaptive
 Grid Programs", Proceedings of the International Parallel and Distributed Processing
 Karavanic, K. Kunchithapadam, T. Newhall, "The Paradyn Parallel Performance
 - Nudd, g.R., Papaefstathiou, E., et. Al., "A layered Approach to the Characterization
 of Parallel Systems for Performance Prediction", in Proceedings of Performance
 Evaluation of Parallel Systems, pp. 26-34, Warwick, 1993
 - Ribler R.L, H. Sinitchi, D. A. Reed, "The Autopilot Performance-Directed Adaptive
 Control system", Future Generation Computer Systems 18(1), pp. 175-187,
 - V. Cardellini, E. Casalicchio, and M. Colajanni," A performance study of distributed
 architectures for the quality of Web services", in Proceeding 34th Annual Hawaii
Index Terms

Computer Science Distributive

Key words

Cloud computing Ant System

Web services