Abstract

Synthesis of efficient DFT (Design for Testability) logic is of prime importance in robustly testable design of QCA based logic circuits. An ingenious universal QCA gate structure, Coupled Majority-Minority (CMVMIN) gate, realizes majority and minority functions simultaneously in its 2-outputs. This device enables area saving implementation of complex QCA logic. In the current work, we investigate cost effective DFT for QCA designs realized with CMVMIN. The fault effects at the gate outputs due to cell deposition and cell misplacement defects are characterized for concurrent testable circuit design. The effective use of unutilized outputs of CMVMIN gates, realizing a circuit, leads to the proposed fault tolerant design that may not be possible with the conventional gate structures.

Reference

433-442
[9] K. Walus et. al., ‘ATIPS laboratory QCADesigner home-page,’
[10] M. B. Tahoori, J. Huang, M. Momenzadeh and F. Lombardi, ‘Characterization, test, and
logic synthesis of And-Or-inverter (AOI) gate design for QCA implementation’, IEEE TCAD,

Index Terms

Computer Science Security

Key words

Fault Tolerant
DFT (Design for Testability)

Coupled Majority-Minority