Abstract

This paper studies the acoustic backscattering of short ultrasonic pulses by air-filled stainless steel-solid polymer two-layer cylindrical tubes immersed in water. The stainless steel one-layer tube is taken as a reference. The focus of this paper is on revealing the effects of physical characteristics of the solid polymer on the scattering phenomenon. The work is done from the calculation of the backscattered pressure, an inverse Fourier Transform, which provides a temporal signal. Wigner-Ville representation has been chosen in order to analyze the acoustic signal backscattered by each tube. For reduced frequencies ranging from 0.1 to 200, the resonance spectrum and resonance trajectories have shown the manifestations of the guided waves. In this respect, the bifurcation of the A0 wave to the A0- and the A0+ waves has been observed. The authors investigate the reduced cutoff frequencies of the symmetrical and the
antisymmetrical guided waves, specially the curves changes. The findings are then compared
with those obtained for the stainless steel one-layer cylindrical tube. Reduced cutoff frequency
values have also been extracted from Wigner-Ville time-frequency images. A good agreement
has, therefore, been obtained. The study of acoustic scattering by stainless steel-solid polymer
two-layer tubes has revealed the sliding of the reduced cutoff frequencies of A1 and S1 guided
waves towards low values, due the repulsion phenomena. The relationship between reduced
cutoff frequency and velocity of wave in the solid polymer is linear; which is a very interesting
result.

References

- Murphy, J. D., Breitenbach, E. D. and Überall, H. 1978 Resonance scattering of
 Press, New York, 191-293.
- Maze, G., Ripoche, J. 1983 Méthode d'isolement et d&apos;identification des
 résonances (M. I. I. R.) de cylindres et de tubes soumis à une onde acoustique plane dans
 l&apos;eau, (Method of Isolation and Identification of Resonances (M. I. I. R.) of cylinders and
 cylindrical shells immersed in water), Revue de Physique Appliquée. 18, 319-326.
- Maze, G., Izbicki, J.-L. and Ripoche, J. 1985 Resonances of plates and cylinders:
- Sammelmann, G. S., Trivett, D. H., and Hackman, R. H. 1989 The acoustic
 scattering by a submerged, spherical shell. I. The bifurcation of the dispersion curve for the
 Nature de l&apos;onde de Scholte sur une coque cylindrique, (Nature of the Scholte wave on a
 cylindrical shell), Acustica, International Journal on Acoustics 81, 201-213.
- Maze, G., Léon, F., Ripoche, J. and Überall, H. 1999 Repulsion phenomena in the
 phase-velocity dispersion curves of circumferential waves on elastic cylindrical shells, Journal of
 the Acoustical Society of America, 105, 1695-1701.
- Maze, G., Izbicki, J.-L. and Ripoche, J. 1986 Acoustic scattering from cylindrical shells:
 guided waves and resonances of the liquid column, Ultrasonics 24, 354-361.
- Chati, F., Léon, F. and Maze, G. 2005 Acoustic scattering by a metallic tube with a
 concentric solid polymer cylinder coupled by a thin water layer. Influence of the thickness of the
 water layer on the two Scholte-Stoneley waves, Journal of the Acoustical Society of America
 118, 2820-2828.
- Liang-Wu Cai, and Sánchez Dehesa, J. 2008 Acoustic scattering by radially stratified
- Hashminejad, S. M. and Rajabi, M. 2008 Acoustic scattering from functionally graded
- Jamali, J., Naet, M. H., Honarvar, F. and Rajabi, M. 2011 Acoustic scattering from
- Jiangong Yu, Lefebvre, J. E. and Elmaimouni, L. 2013 Toroidal wave in multilayered

Cohen, L. 1995 Time-Frequency Analysis, Prentice Hall, PTR, the City University of New York, 1-316.

Index Terms

Computer Science
Applied Sciences

Keywords

Acoustic backscattering; Two-layer cylindrical tube; Resonance spectrum; Wigner-Ville time-frequency representation.