Abstract

In this paper, the performance of Wireless Sensor Networks (WSN) is improved using adaptive antenna technique and High-Altitude Platforms Systems (HAP). An adaptive concentric circular array (ACCA) is proposed to improve the communications link between sink and sensor nodes. The system is first demonstrated for several scenarios including different cell sizes at a HAP height of 20 km and the quality of link in terms of the ratio of bit energy to noise power is demonstrated where it shows the capability and reliability of building HAP-WSN despite of the long distance between ground sensors and HAP sink. The proposed ACCA technique provides a power gain profile that both increases the power to and from sensor nodes as well as it reduces the out-of-cell radiation to other HAP-WSN areas.
- R. Alageswaran, R. Usha, R. Gayathridevi, G. Kiruthika, "Design and implementation of dynamic sink node placement using Particle Swarm Optimization for life time maximization of WSN applications"., IEEE International Conference on Advances in Engineering, Science and Management (ICAESM), Nagapattin, India, pp. 552 – 555, 30-31 March 2012.
- Yasser Albagory, "An Efficient Clustering Scheme for High Altitude Platform Mobile

- Sultan Aljahdali, Mostafa Nofal and Yasser Albagory, "A Modified Array Processing
A Novel Technique to improve the Performance of Wireless Sensor Network using Adaptive Antennas and High-Altitude Platform Communications

Index Terms

Computer Science Wireless
Keywords

HAP WSN Adaptive Antenna Concentric Circular Arrays