Abstract

Indexing enormous databases such as RDF has been a focus of intense research. As is well understood, indexing plays a pivotal role in speeding up data retrieval operations and query performance. Besides expediting search, an index can motivate new data-store schemes and technologies that can possibly revolutionize large data-analytics engine design, more often relevant to semantic web. Due to the proliferation of internet and the ease of creating and generating data on the fly - handling, storing and the subsequent semantic processing has proven to be a major bottleneck for the RDF data community. Handling data of such scale and magnitude requires a parallel approach as provided by the GPUs (Graphical processing units). In this paper, a new efficient and scalable index is proposed that uses a combination of B+ trees, hashing and sparse matrices. These data structures have an edge over others in terms
of their implementation as a parallel algorithm using the CUDA (Compute Unified
Device Architecture) framework meant to program massively parallel GPU multicores. So far, RDF
data has been mostly implemented either as a RDBMS or as a non-native data-store, in both
cases the sequential indexing strategy fails miserably with the scaling of the data-store. Parallel
implementation of indices provides a suitable option for dealing with scalable and dynamically
generated data over distributed networks. The crucial sparse matrix part of the proposed index
is benchmarked against different CUDA memory implementations to derive optimal matrix
processing options. The sparse matrix search is profiled using cudamemchk and visual profiler
for identifying bottlenecks and inconsistencies in thread execution called thread divergence.
Benchmarking the data provides promising results for a B+ tree based index coupled with
hashing and sparse matrix implementations.

References

- T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web, Scientific American, 284(5),
- Wolfgang Nejdl, Hadhami Dhraief, Martin Wolpers, O-Telos-RDF: A Resource
Description Format with Enhanced Meta-Modeling Functionalities based on O-Telos
- Svihla, M. Transforming Relational Data into Ontology Based RDF Data (a doctoral
 thesis). June 2007
 MIT Press.
- Speeding up on-disk RDF index lookups using B+Hash trees, Minh Khoa Nguyen,
 Cosmin Basca, Abraham Bernstein, IOS Press, 2012
- T. Neumann and G. Weikum, RDF-3X: A RISC-style engine for RDF, Proc. VLDB,
 1(1), 2008
- Mohammed Hussain, Pankil Doshi, Latifur Khan, James McGlothlin, Murat Kantarcioglu,
 Bhavani Thuraisingham, Efficient Query Processing for Large RDF Graphs Using Hadoop and
 MapReduce, Technical Report UTDCS-41-09, Department of Computer Science, The University
 of Texas at Dallas, November, 2009.
- Hexastore: Sextuple Indexing for Semantic Web Data Management, Cathrin Weiss,
 Panagiotis Karras, Abraham Bernstein
- Large RDF Representation Framework for GPUs Case Study Key-Value Storage and
 Binary Triple Pattern, Chidchanok Choksuchat, Chantana Chantrapornchai, International
 Computer Science and Engineering Conference (ICSEC), 2013
- Binary RDF representation for publication and exchange (HDT), Javier D. Fernandez,
 Miguel A. Martinez-Prieto, Claudio Gutierrez, Axel Polleres, Mario Arias, Journal of Web
 Semantics: Science, Services, and Agents on the World Wide Web, Elsevier
- Optimizing RDF stores by coupling General-purpose Graphics Processing Units and
 Central Processing Units, Bassem Makni
- Erling and Mikhailov, RDF Support in the Virtuoso DBMS
- Javier D. Fernández, Miguel A. Martinez-Prieto, Claudio Gutiérrez, Axel Polleres, Mario Arias,
 Binary RDF representation for publication and exchange (HDT), Web Semantics:
Efficient Hash Tables on the GPU, Dan Anthony Feliciano Alcantara, PhD Thesis, University of California, Davis.
- NVIDIA Cusparse Library, DU-06709-001_v5. 5, July 2013, Nvidia Corporation.
- Semantic Search over the Web Data-Centric Systems and Applications 2012, pp 31-60.
- Towards distributed processing of RDF path queries, pages 207-230, Richard Vdovjak, Jeen Broekstra, Geert-Jan Houben
- Perfect Spatial Hashing, Sylvian Lefebvre, Hugues Hoppe, Microsoft Research.

Index Terms

Keywords
RDF B+ tree hashmap sparse matrix CUDA GPU.