Loss of Uniqueness of the Boundary Value Problem Involving the Mini-Drucker-Prager CLoE Model

Abstract

The loss of positiveness of the second order work (SOW) induce the loss of uniqueness of the solution of the small strain boundary value problem as it is shown in the literature, and therefore, the onset of strain localization bands in the studied material. This paper is devoted to study the mini-CloE Drüker-Prager model. The results showed that non-associated model, although isotropic, can be the seat of strain localization in contrary to its counterpart associated isotropic model. In addition, the anisotropy is a factor encouraging the onset of strain localization. In fact, it makes the associated model subject of losing the positiveness of the SOW and accentuates the negativity of the SOW of the non-associated model. These results are similar with those established for the mini-CLoE von Mises and Mohr Coulomb models and those known for the elastic-plastic materials.

References

- R. Chambon. Une classe de lois de comportement incrémentalement non linéaires pour
Loss of Uniqueness of the Boundary Value Problem Involving the Mini-Drucker-Prager CLoE Model

les sols non visqueux, résolution de quelques problèmes de cohérence. C. R. Acad. Sci.,
- S. Crochepeyre. Contribution à la modélisation numérique et théorique de la
localisation et de la post-localisation dans les géomatériaux, PhD thesis, Université Joseph
- R. Chambon and V. Roger. Mohr-Coulomb MiniCLoE model Uniqueness and
49-68.
- V. Roger. Etude expérimentale et théorique de la localisation des déformations dans les
matériaux granulaires en condition isochore, PhD thesis, Université Joseph Fourier Grenoble,
2000.
- R Chambon and D. Caillerie. Existence and uniqueness theorems for boundary value
problems involving incrementally non linear models, Int. J. of Solids and Structures 36 (1999),
pp. 5089-5099.
- G. Gudehus. A comparison of some constitutive laws for soil under radially symmetric
loading and unloading. Numerical methods in geomechanics W. Wittke eds., A. A. Balkema,
1979.
- R. Chambon, J. Desrues, W. Hammad and R. Charlier. CLoE, a new rate-type
- R. Chambon, J. Desrues and D. Tillard. Shear moduli identification versus
experimental localisation data. Localisation and Bifurcation Theory for Soils and Rocks,
Chambon, Desrues, Vardoulakis eds. (1994).
6 (1958), pp. 236-249.
- D. Bigoni and T. Hueckel. Uniqueness and localization I and II, associative and
COSS\apos;01.
- T. Désoyer and F. Cormery. On uniqueness and localization in elastic-damage
- B. Loret and E. Rizzi. Qualitative analysis of strain localization. Part I and II. Int. J. of

Index Terms

Computer Science
Applied Mathematics
Keywords
Bifurcation second order work mini-CLoE Drücker-Prager limit surface.