Abstract

The project aims to build a monocular vision autonomous car prototype using Raspberry Pi as a processing chip. An HD camera along with an ultrasonic sensor is used to provide necessary data from the real world to the car. The car is capable of reaching the given destination safely and intelligently thus avoiding the risk of human errors. Many existing algorithms like lane detection, obstacle detection are combined together to provide the necessary control to the car.

References

- S. Tuohy, D. O&apos;Cualain, E. Jones, & M. Glavin, Distance determination for an automobile environment using inverse perspective mapping in OpenCV, in Proc. Irish Signals and Systems Conference 2010.
- Dhaval Chheda, Divyesh Darde & Shraddha Chitalia, Smart Projectors using Remote Controlled Raspberry Pi, International Journal of Computer Applications (0975 – 8887), Volume
Design and Implementation of Autonomous Car using Raspberry Pi

82 – No. 16, 2013, pp. 6-11

- David Hayward, Raspberry Pi operating systems: 5 reviewed and rated [Online], available at: http://www.in.techradar.com/news/software/

- Tan-Hung Duong, Sun-Tae Chung, Seongwon Cho, Model-Based Robust Lane Detection for Driver Assistance, available at: http://www.kpubs.org/article/articleMain.kpubs?spotType=low&articleANo=MTMDCW_2014_v17n6_655

Index Terms

Computer Science Automated Systems

Keywords

Raspberry Pi lane detection obstacle detection.