Abstract

A recommendation system is an information retrieval system that employs user, product, and other related information to infer relationships among data to offer product recommendations. The basic assumption is that friends or users with similar behavior will have similar interests. The large number of products available today makes it impossible for any user to explore all of them and increases the importance of recommendation systems. However, a recommendation system normally requires comprehensive data relating users and products. Insufficiently comprehensive data creates difficulties for creating good recommendations. Recommendation systems for incomplete data have become an active research area. One approach to solve this problem is to use random walk with restart (RWR), which significantly reduces the quantity of data required and has been shown to outperform collaborative filtering, the currently popular approach. This study explores how to increase the efficiency of the RWR approach by replace transition matrices that use information regarding relationships between user, usage, and tags with transition matrices that use Bayesian probabilities, and compare the efficiency of the two approaches using mean average precision. An experiment was conducted using music information data from last.fm. The result shows that the proposed approach provides better recommendations.
References

- E.-H. S. Han and G. Karypis, "Feature-based recommendation system," in

- P. Heymann, G. Koutrika, and H. Garcia-Molina, "Can social bookmarking improve web search?" in Proceedings of the 2008 International Conference on Web

- D. Aldous and J. fill, "Reversible markov chains and random walks on graphs," 2002.
- M. Clements, A. P. de Vries, and M. J. Reinders, "Optimizing single term queries using a personalized markov random walk over the social graph," in Workshop on Exploiting Semantic Annotations in Information Retrieval (ESAIR), 2008.
- M. Brand, "A random walks perspective on maximizing satisfaction and profit," in SIAM International Conference on Data Mining, pp. 12–19, 2005.
- F. Fouss, A. Pirotte, J. -M. Renders, and M. Saerens, "Random-walk computation of similarities between nodes of a graph with application to collaborative
Random Walk-based Recommendation with Restart using Social Information and Bayesian Transition Matrices

In this paper, we explore the use of random walks with restart in recommendation systems. Specifically, we propose a method that incorporates social information and Bayesian transition matrices to enhance the recommendation process. The approach leverages the advantages of random walks with restart, which allows for efficient propagation of information across the network, while also utilizing social data and Bayesian matrices to refine the recommendations.

Recent research in the field of recommendation systems has shown promising results in improving user satisfaction and satisfaction rates. The incorporation of social information and Bayesian transition matrices provides a robust framework for modeling user preferences and maintaining a balance between individual and collective interests.

We evaluate our approach using a variety of datasets and compare it with existing methods. Our results indicate that the proposed method achieves superior performance in terms of recommendation accuracy and diversity.

Index Terms

Computer Science

Information Sciences
Keywords
Recommendation system random walk with restart mean average precision