Abstract

It is becoming increasingly difficult to ignore the importance of aligning DNA and Protein sequences to infer properties of new sequences from well-known reference sequences established and sorted in genetics databanks. Many studies in recent years have focused on different implementations of Sequences Alignment Problems (SAP). However, researcher confused with the ambiguous classification of the SAP. This paper is set out mainly to review, investigate, and analysis current trends in shared memory and hardware implementation of local SAP using Smith-Waterman algorithm. The literatures are addressing and evaluating in order to highlight their advantages and disadvantages.

References

- D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, "ProtTest 3: fast selection..."
- T. Rognes, "Faster Smith-Waterman database searches with inter-sequence SIMD
- T. Majumder, P. P. Pande, and A. Kalyanaraman, “Hardware Accelerators in
- B. Vibishna, K. S. Beenamole, and A. K. Singh, "Understanding single-event
 effects in FPGA for Avionic system design," Iete Technical Review, vol. 30, pp. 497-505,
 Nov-Dec 2013.
- A. Surendar, M. Arun, and C. Bagavathi, "EVOLUTION OF RECONFIGURABLE
 BASED ALGORITHMS FOR BIOINFORMATICS APPLICATIONS: AN INVESTIGATION," International
- X. Meng and V. Chaudhary, "Boosting data throughput for sequence database
 similarity searches on FPGAs using an adaptive buffering scheme," Parallel Computing,
- J. Allred, J. Coyne, W. Lynch, V. Natoli, J. Grecco, and J. Morrissette,
 "Smith-Waterman implementation on a FSB-FPGA module using the Intel Accelerator
- C. YILMAZ and M. GÖK, "System designs to perform bioinformatics sequence
 246-262, 2013.
- Y. Zhang, S. Misra, D. Honbo, A. Agrawal, W. Liao, and A. Choudhary,
 "Efficient pairwise statistical significance estimation for local sequence alignment using
 GPU," in Computational Advances in Bio and Medical Sciences (ICCABS), 2011 IEEE 1st
- P. Borovska and M. Lazarova, "Parallel models for sequence alignment on CPU
 and GPU," in Proceedings of the 12th International Conference on Computer Systems
- A. Papadopoulos, I. Kirmitzoglou, V. J. Promponas, and T. Theocharides,
 "GPU technology as a platform for accelerating local complexity analysis of protein sequences," in
 Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International
 Conference of the IEEE, 2013, pp. 2684-2687.
- S. Manavski and G. Valle, "CUDA compatible GPU cards as efficient hardware
 S10, 2008.
 Alignment of Species-Based Protein Sequences on GPU," International Journal of Parallel
- S. Sarkar, G. R. Kulkarni, P. P. Pande, and A. Kalyanaraman, "Network-on-chip
 hardware accelerators for biological sequence alignment," Computers, IEEE Transactions
 May-Jun 2013.

Index Terms

Computer Science
Algorithms
Keywords
DNA Protein Sequences Alignment Shared Memory Smith-Waterman Parallel Computing.