Abstract

It is becoming increasingly difficult to ignore the importance of aligning DNA and Protein sequences to infer properties of new sequences from well-known reference sequences established and sorted in genetics databanks. Many studies in recent years have focused on different implementations of Sequences Alignment Problems (SAP). However, researcher confused with the ambiguous classification of the SAP. This paper is set out mainly to review, investigate, and analysis current trends in shared memory and hardware implementation of local SAP using Smith-Waterman algorithm. The literatures are addressing and evaluating in order to highlight their advantages and disadvantages.

References

- D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, "ProtTest 3: fast selection
- M. Imelfort, "Sequence comparison tools," Bioinformatics, vol. 26, pp. 13-37, 2009.
- D. Díaz, F. J. Esteban, P. Hernández, J. A. Caballero, G. Dorado, and S. Gálvez, "Parallelizing and optimizing a bioinformatics pairwise sequence alignment algorithm for many-core architecture," Parallel Computing, vol. 37, pp. 244-259, 2011.
- G. Delgado and C. Aporntewan, "Data dependency reduction in Dynamic Programming matrix," in Computer Science and Software Engineering (JCSSE), 2011 Eighth International Joint Conference on, 2011, pp. 234-236.
- N. Sebastião, G. Encarnação, and N. Roma, "Implementation and performance analysis of efficient index structures for DNA search algorithms in parallel?platforms," Concurrency and Computation: Practice and Experience, pp. n/a-n/a, 2012.
- T. Rognes, "Faster Smith-Waterman database searches with inter-sequence SIMD

- T. Majumder, P. P. Pande, and A. Kalyanaraman, "Hardware Accelerators in

Index Terms

Computer Science

Algorithms
Keywords
DNA Protein Sequences Alignment Shared Memory Smith-Waterman Parallel Computing.