Abstract

With the recent advances in the field of artificial intelligence and information technology, the improvement in the interpretation of the medical images has contributed significantly to the early diagnosis of different diseases. Medical images are difficult to process because they have various modalities. Therefore, the physicians cannot adequately detect and diagnosis the diseases in traditional ways. There should be Computer-aided detection/diagnosis (CAD) systems that help physicians to understand medical images. CAD systems are processes that give much information that help to understand the medical images and improve the accuracy of detection/diagnosis of various diseases. CAD systems consist of the segmentation of the lesion, extraction of features, and characterization of diseases by means of a classifier. There are many different CAD systems that have been proposed to diagnosis various diseases of various organs of the human body, such as liver and brain. This paper, introduces current different methods of segmentation based on medical images. In addition, this paper also concentrates on the work of different segmentation and classification techniques that have been proposed to diagnosis various liver diseases.
References

- Santanu Bhowmik, Viki Datta, "A Survey on Clustering Based Image..."

- Pritesh Vora and Bhavesh Oza, \textquoteleft;A Survey on K-mean Clustering and Particle Swarm Optimization\textquoteright;\textasciitilde; International Journal of Science and Modern Engineering (IJISME) ISSN: 2319-6386, Vol. 1, Issue 3, February 2013.

- Deepti Mittal, Vinod Kumar, \textquoteleft;Neural network based focal liver lesion diagnosis using ultrasound images\textquoteright; Computerized Medical Imaging and Graphics, vol. 35, pp. 315–323, 2011.

- Jae Hyun Jeon, Jae Young Choi, Sihyoung Lee, and Yong Man Ro, \textquoteleft;Multiple ROI selection based focal liver lesion classification in ultrasound images\textquoteright; Expert Systems with Applications 40, pp. 450-457, 2013.

- Andreia Andrade Jose and Silvestre Silva, \textquoteleft;Classifier Approaches for Liver Steatosis using Ultrasound Images\textquoteright; Procedia Technology, vol. 5, pp. 763–770, 2012.

- Ali A. Sakr, Magdi Elias Fares, and Mai Ramadan, \textquoteleft;Automated Focal Liver Lesion Staging Classification based on Haralick Texture Features and Multi-SVM\textquoteright; International Journal of Computer Applications (0975 – 8887) Vol. 91 – No. 8, April 2014.

- Nidaa Al-deek, Raja S. Al-Omari, M. B. Al-Zoubi, and Hazem Hiary, \textquoteleft;Liver Segmentation from Abdomen CT Images with Bayesian Model\textquoteright; Journal of Theoretical and Applied Information Technology Vol. 60 No. 3 Feb. 2014.

- S. S. Kumar, R. S. Moni, and J. Rajeeesh, \textquoteleft;Automatic Segmentation of Liver and Tumor for CAD of Liver\textquoteright; JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, Vol. 2 No. 1, Feb. 2011.

- Ricardo Ribeiro Rui Marinho, J. V. F. R. & Sanches, J. M. \textquoteleft;Chronic Liver Disease Staging Classification Based On Ultrasound, Clinical And Laboratorial Data\textquoteright; IEEE International Symposium, Biomedical Imaging: From Nano to Macro, pp. 707-710, 2011.

- Ricardo Ribeiro and Joao Sanched, \textquoteleft;Fatty liver characterisation and classification by Ultrasound\textquoteright; IbPRIA 2009, LNCS 5524, Springer-Verlag Berlin Heidelberg, pp.
Medical Image Segmentation for Liver Diseases: A Survey

Index Terms

Computer Science
Image Processing

Keywords

Computer Aides Diagnosis (CAD) Systems
Medical Image Segmentation
Classification

Diagnosis of Liver Diseases.