Abstract

The essence of an image is a projection from a 3-D scene onto a 2-D plane, during which the depth information is lost. The 3-D point corresponding to a specific image point is constrained to be on the line of sight. From a single image, it is very difficult to determine the depth information of various object points in an image. If two or more 2-D images are used, then the relative depth point of the image points can be calculated which can be further used to reconstruct the 3-D image by projecting the image points which includes the depth information as well. This paper presents two techniques namely binocular disparity and photometric stereo for depth calculation and 3-D reconstruction of an object in an image as it requires minimum user intervention. Binocular disparity method requires a pair of stereo images to compute disparity and depth to generate the desired 3-D view whereas the photometric stereo method requires multiple images under different light directions.
An Approach to Calculate Depth of an Object in a 2-D Image and Map it into 3-D Space

- Ted Shultz and Luis A. Rodriguez, "3-D Reconstruction from two 2-D images.", ECE 533 Fall 2003.
- Arne Henrichsen, "3-D Reconstruction and Camera Calibration from 2-D Images.", Department of Electrical Engineering, University of Cape Town, December 2000.

- Assoc. Prof. Dr. Ir. E. A. Hendriks Dr. Ir. P. A. Redert, "Converting 2-D to 3-D: A Survey.", Information and Communication Theory Group (ICT) Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology, the Netherlands, December 2005.
- Aaron Hertzmann, Steven M. Seitz, "Example-Based photometric stereo: Shape reconstruction with general, varying BRDFs.", Pattern Analysis and Machine Intelligence, IEEE Transactions, Vol 27, August 2005.
An Approach to Calculate Depth of an Object in a 2-D Image and Map it into 3-D Space

- Dr. SukhenduDas. "Computer Vision (CS 635), Shape from Shading." Available online at http://www.cse.iitm.ac.in/~vplab/courses/CV_DIP/PDF/ShapeFromShading.pdf

Index Terms

Computer Science
Image Processing

Keywords

Feature point
Binocular disparity
Edge detection
Depth
Photometric stereo
Normal map
Highlight.