Abstract

The demand for smartphones and mobile based applications is growing very fast since past few years. Thousands of applications on Google Play store received millions of downloads. The growing smartphone functionalities have increased its energy requirements. The applications provide amazing features and rich user interfaces, make use of hi-tech sensors leading to high power utilization. Many such application contains various kinds of power bugs which leads to unnecessary processes running in the system. There is large scope to optimize power utilization in smartphones. This paper identifies various components in smartphones that utilize power causing unnecessary power wastage in the system. It highlights various subsystems proposed by researchers in order to optimize power consumption in smartphones.

References

- Olsen, C. M. Narayanaswami, "Power-Nap: An efficient power management
- "Nanowire battery can hold 10 times the charge of existing lithium-ion battery"; Stanford technical report, Stanford, 2007.
- G. P. Perrucci, F. H. P Fitzek, J. Widmer, Power Utilization Entities on the Smartphone Platform;
 - Sean Maloney, Ivan Boci, Survey on Techniques for Efficient power utilization in Mobile Architectures;
 - Ning Ding, Daniel Wagner, Xiaomeng Chen, Characterizing and Modelling the Impact of Wireless Signal Strength on Smartphone Battery Drain;
 - Mohammad A. Hoque, MattiSiekkinen, and Jukka K. Nurminen, On the power efficiency of proxy-based traffic shaping for mobile audio streaming;
 - B. -G. Chun and P. Maniatis, Augmented Smartphone Applications through Clone Cloud Execution;
 - Surendar Chandra, Amin Vahdat, Application-specific network management for power-aware streaming of popular multimedia formats;
 - J. Flinn, D. Narayanan, and M. Satyanarayanan, Self-Tuned Remote Execution for Pervasive Computing;
 - A Pathak, A. Jindal, Characterizing and Detecting No-Sleep Energy Bugs in Smartphone Apps;
 - Eduardo Cuervo, Aruna Balasubramanianz, Dae-ki Cho, MAUI: Making Smartphones Last Longer with Code Offload;
- U-BLOX AG. ATR0630 Data Sheet, July 2006. GPS. G4-X-06009-P2.
- Xiao Ma, Peng Huang, Xinxin Jin, Pei Wang, Soyeon Park, Dongcai Shen, “eDoctor: Automatically Diagnosing Abnormal Battery Drain Issues on Smartphones”.
- S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl, “There’s an app for that, but it doesn’t work. Diagnosing mobile applications in the wild”, in Hotnets, 2010.

- Xiao Ma, Peng Huang, Xinxin Jin, Pei Wang, eDoctor: Automatically Diagnosing Abnormal Battery Drain Issues on Smartphones.

Index Terms

Computer Science

Networks
Keywords
Smartphone Applications Power usage Energy bugs Optimization.