Abstract

This paper proposes a new approach to real time economic and emission dispatch by using orthogonal least-squares (OLS) and modified particle swarm optimization (MPSO) algorithms to construct the radial basis function (RBF) network. The objectives considered are fuel cost and NOx/CO2 emissions. The RBF network is composed of input, hidden, and output layers. The OLS algorithm provides a simple and efficient means for fitting radial basis function networks. The MPSO algorithm is implemented to tune the parameters in the network, including the dilation and translation of RBF centers and the weights between the hidden and output layer. The proposed approach has been tested on the IEEE 30-bus six-generator system. Testing results indicate that the proposed approach can make a quick response and yield accurate Real
time economic and emission solutions.

Reference

- D. N. Jeyakumar, T. Jayabarathi, and T. Raghunathan, “Particle swarm optimization for
- S. Naka, T. Genji, T. Yura, and Y. Fukuyama, “A hybrid particle swarm optimization for
- J. S. Heo, K. Y. Lee, and R. Garduno-Ramirez, “Multiobjective control of power plans
- A. J. Wood and B. F. Wollenberg, Power Generation Operation and Control, 2nd ed. New
- C. M. Huang, H. T. Yang, Y. Y. Hong, S. P. Hong, and K. P. Liou, “Power dispatching
1999.

Index Terms

Computer Science  Power Systems

Key words

Modified particle swarm optimization  orthogonal least-squares
radial basis function  Real time

economic
emission dispatch