Abstract

Document binarization plays important role to preserve the historical document. Recently number of researcher present numerous techniques of document binarization that can vary in sensitivity, quality and some more control parameters. The document image binarization focuses on extracting the text and background of the image. In doing this the edge detection approach also played the crucial role. In this paper a framework for digitations of historical physical document has been proposed. This framework suggest to use Markov random function to evaluate contrast of pixel and try to overcome the problem of appearance of a single document that can vary greatly depending on factors such as lighting, viewing angle. Following that, proposed framework uses this energy to differentiate foreground and background ink. Final binaries image document have significant enhance in PSNR (db) value. Proposed scheme use DIBCO (2013) for evaluation and validation.

References
1. Reza Farrahi Moghaddam, Mohamed Cheriet “AdOtsu: An adaptive and parameter less
generalization of Otsu’s method for document image binarization”, in Elsevier transaction of
2. B. Gatos, K. Ntirogiannis, I. Pratikakis, “Document image binarization contest (DIBCO
3. Pratikakis, I., Gatos, B., Ntirogiannis, K., “Document image binarization contest (DIBCO
Image Binarization using Markov Random Field” in 21st International Conference on Pattern
Recognition (ICPR 2012) November 11-15, IEEE-2012. Tsukuba, Japan
5. Bolan Su, Shijian Lu, And Chew Lim Tan “Robust Document Image Binarization
22, No. 4, April 2013
6. David Hebert, Stephane Nicolas and Thierry Paquet “Discrete CRF based combination
framework for document image binarization” in 12th International Conference on Document
Analysis and Recognition, IEEE-2013
7. Karthika M Ajay James “A Proposed Method For Document Image Binarization Based on
Bit Plane Slicing” in International Conference on Advances in Engineering &Technology
Research (ICAETR - 2014), August 01-02,IEEE-2014
8. M. Sezgin, B. Sankur, “Survey over image thresholding techniques and quantitative
9. R. Farrahi Moghaddam, M. Cheriet, “A multi-scale framework for adaptive binarization of
11. B. Gatos, K. Ntirogiannis, I. Pratikakis, DIBCO 2009: document image binarization
13. B. Gatos, K. Ntirogiannis, I. Pratikakis, ICDAR 2009 document image binarization
for the binarization of historical manuscripts and degraded document images”, Pattern
Recognition 44 (9) 2184–2196, 2011.
15. B. Su, S. Lu, C.L. Tan, “A self-training learning document binarization frame work”,

Index Terms

Computer Science Pattern Recognition
Keywords

Document digitization, Markov Random field, Contrast measurement, Gaussian filter, Weiner filter