Abstract

This paper presents a DC motor fault diagnosis system based on Bayesian networks. This was done by the design of a new electromechanical test bed allowing the collection of functioning data from a real world industrial Direct current (DC) Motor. The data collection will help in the construction of Bayesian networks models. These data are collected from sensors measuring different types of variables that are directly related to the industrial system. Without doing any mathematical modeling that describes the physical properties of the studied DC motor, the proposed tool provides with the help of Bayesian networks parameters and structure learning algorithms, the base to construct a fault diagnosis tool that can be extended to a fault prognosis tool.

References

An industrial Fault Diagnosis System based on Bayesian Networks

2. Abdelkabir BACHA, A.Haroun SABRY, and Jamal BENHRA. Contribution l’aide la
décision dans le domaine industriel en utilisant les r’eseaux bay´esiens. In CIMSI 14
Conf´erence Internationnale sur le Monitoring des Systmes Industriels.

3. Gregory F Cooper. The computational complexity of probabilistic inference using

4. Gregory F Cooper and Edward Herskovits. A bayesian method for the induction of

5. Marcos FSV DAngelo, Reinaldo M Palhares, Luciana B Cosme, Lucas A Aguiar, Felipe S
Fonseca, and Walmir M Caminhas. Fault detection in dynamic systems by a fuzzy/bayesian

6. M Julia Flores, Jos´e A G´amez, Ana M Mart´inez, and Jos´e M Puerta. Handling numeric
attributes when comparing bayesian network classifiers: does the discretization method matter?

7. Nir Friedman, Moises Goldszmidt, et al. Discretizing continuous attributes while learning

8. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian
H Witten. The weka data mining software: an update. ACM SIGKDD explorations newsletter,

9. David Heckerman, Dan Geiger, and David M Chickering. Learning bayesian networks:

11. Khalid Iqbal, Xu-Cheng Yin, Hong-Wei Hao, Qazi Mudassar Ilyas, and Hazrat Ali. An
overview of bayesian network applications in uncertain domains. International Journal of

12. Patrick Jahnke. Machine Learning Approaches for Failure Type Detection and Predictive

13. Andrew KS Jardine, Daming Lin, and Dragan Banjerc. A review on machinery
diagnostics and prognostics implementing condition-based maintenance. Mechanical systems

Ltd, 2014.

15. Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and

17. Stefano Monti and Gregory F Cooper. A multivariate discretization method for learning
bayesian networks from mixed data. In Proceedings of the Fourteenth conference on

20. Xiao-Sheng Si, Wenbin Wang, Chang-Hua Hu, and Dong- Hua Zhou. Remaining useful
life estimation–a review on the statistical data driven approaches. European Journal of

Index Terms

Computer Science

Networks

Keywords

Machine Learning, Artificial Intelligence, Bayesian networks, fault diagnosis, data acquisition, DC motor