Abstract

This paper concentrates on the evaluation of reliability measures of a computer system by introducing the concept of priority of hardware repair over software up-gradation. The system operates with one more hardware in cold standby. The failure times of hardware and software are independent random variables which follow negative exponential distribution. The repair facility (called server) attends the faults immediately which occur during operation of the system. Repair of the hardware is done at failure while software undergoes for up-gradation. The distributions of hardware repair and software up-gradation times are taken as arbitrary with different probability density functions. The system model has been analyzed using semi-Markov process and regenerative point technique. The trends of some important measures of system effectiveness have been observed for arbitrary values of the parameters. The profit of the present model has also been compared with that of the system model in which no priority is given to hardware repair.
 Distributions for H/W and S/W Replacement Time and Priority to Repair Activities of H/W over
 Replacement of the S/W, International Journal of Systems Assurance Engineering and
 System with Priority to Up-gradation of Software over Hardware Repair Activities. International
 system with independent hardware and software failures. Bulletin of Pure and Applied Sciences,
 Maintenance and Priority Subject to Maximum Operation and Repair Times. International

Index Terms

Computer Science Circuits and Systems

Keywords

Computer System, Hardware Redundancy, Priority to Repair, Software Up-gradation, Hardware
Repair and Reliability Measures