Abstract

Melanoma is the most dangerous form of skin cancer. It must be detected in the initial stage to increase the survival rates. In medical field, Melanoma detection is usually done by clinical analysis and biopsy tests. These methods are time consuming, expensive and have many side effects. Thus, an automated melanoma detection system is better to assess a patient’s risk of melanoma in the initial phase with high accuracy. Existing automated melanoma detection systems make use of thresholding, statistical region merging and Otsu’s method for segmentation. These segmentation methods do not include texture analysis, so the accuracy is less. Accuracy of segmentation and melanoma detection can be improved by examining the textural features of skin lesion. Computer aided melanoma detection system using image processing techniques is proposed for accurate and early detection of melanoma. This system has different stages which include preprocessing for image enhancement, segmentation of skin lesion using textural features to improve accuracy, feature extraction and classification. The input image is preprocessed using contrast stretching for image enhancement. The enhanced image is segmented using Texture Distinctiveness Lesion Segmentation (TDLS) algorithm to
extract the lesion area from the background skin. Feature extraction is done using graylevel
cooccurrence matrix. The system is trained with the extracted features using a good classifier to
classify the lesion as malignant or benign melanoma. Accuracy of the proposed system is
computed and compared with other segmentation and classification algorithms.

References

1. Details of skin cancer. [Online]. Available at:
http://www.cancer.gov/cancertopics/types/skin
2. J. Glaister, A. Wong, and D. A. Clausi, “Segmentation of Skin Lesions From Digital
4, pp. 1220–1231, Apr. 2014
3. Melanoma Available at: http://www.skincancer.org/skin-cancer-information/melanoma
4. Types of Melanoma. [Online]. Available at:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253944.
M. Malters, J. M. Grichnik, A. A. Marghoob, H. S. Rabinovitz, and S. W. Menzies, “Border
detection in dermoscopy images using statistical region merging,” Skin Res. Technol., vol. 14,
6. J. Glaister, A. Wong, and D. A. Clausi, “Automatic Skin Lesion Segmentation via
7. J. Humayun, A. S. Malik, N. Kamel, “Multilevel thresholding for segmentation of pigmented
8. G. Schaefer, M. Rajab, M. Emre Celebi and Hitoshi Iyatomi, "Skin lesion extraction in
dermoscopic images based on colour enhancement and iterative segmentation," ICIP, IEEE
Journal, pp. 3361-3364, 2009
10. N. Hema Rajini, R. Bhavani, “Computer aided detection of ischemic stroke using
segmentation and texture features” ELSEVIER, Measurement 46, pp. 1865-1874, 2013
11. Guoqiang Peter Zhang, “Neural Networks for Classification”, IEEE Transactions On
Systems, Man, And Cybernetics-Part C: Applications And Reviews, Vol. 30, 2000
12. Feed Forward Network. Available at: http://www.fon.hum.uva.nl/praat/manual/Feedforward_neural_networks_1__What_is_a_feedfor
ward_ne.html
13. DermQuest Image Database [online]. Available at:
https://www.dermquest.com/results/?q=Malignant%20melanoma
skin color images,” in Advances in Visual Computing, G. Bebis, R. Boyle, B. Parvin, D. Koracin,
R. Chung, R. Hammoud, M. Hussain, T. Kar-Han, R. Crawfis, D. Thalmann, D. Kao, and L.
Avila, Eds., (ser.Lecture Notes in Computer Science), vol. 6453 Heidelberg, Germany: Springer,
2011.
Index Terms

Computer Science

Artificial Intelligence

Keywords

Melanoma; Skin Cancer; Statistical region Merging; TDLS.