Abstract

A Text To Speech synthesis (TTS) is the production of artificial speech by a machine for the given text as input. This field of study is known both as Speech Synthesis that is the "synthetic" (computer) generation of speech, and Text-To-Speech or TTS. It is the process of converting written text into speech. In the process of speech synthesis, mainly two processing components are used; they are NLP (natural language processing) and DSP (digital signal processing) modules. The speech synthesis has enormous applications such as reading for blind people, telecommunication services, language education, and aid to handicapped persons, talking books and toys, call center automation etc. The main aim of the project is to develop a TTS system producing a voice with Indian accent for the given input text. In this project, for the conversion of text to speech, we use Festival in Linux environment. Festival is a general pre-packaged tool for development of multi-language speech synthesis systems; and it will support most of the languages in the text to speech conversion. In this project, the speech generation process is done by using Festival framework and speech tools. The voice model is
Speech Synthesis System for Marathi Accent using FESTVOX

generated by using festvox frame work, festival and speech tools. The required speech data for
generating voice is recorded in noise less environment. The voice models can be generated by
unit selection or clustered gen modules present in festvox. It is observed from the generated voices
that clustered voices are better than unit selection voices.

References

1. Ramani Boothalingam, V Sherlin Solomi, Anushiya Rachel Gladston, Lilly Christina, P
Vijayalakshmi, Nagarajan Thangavelu, Hema A Murthy, “Development and Evaluation of Unit
Selection and HMM-Based Speech Synthesis Systems for Tamil” 978-1-4673-5952-8/13/$31.00
© 2013 IEEE
2. Samuel Thomas, “Natural Sounding Text-To-Speech Synthesis Based on Syllable-Like
3. Paul Taylor, a text book on “Text to Speech Synthesis”, University of Cambridge, United
Kingdom
Mons, TCTS Lab, 31, bvd Dolez, B-7000 MONS (Belgium).
5. Sami Lemmetty “Review of Speech Synthesis Technology” M.Tech., Helsinki University of
Technology, Finland, 1999
7. A.J. Hunt and A. Black: “Unit selection in a Concatenative speech synthesis system using
8. Möbius: Corpus-based speech synthesis: Methods and challenges, Arbeitspapiere des
9. Simon King, “A beginners’ guide to statistical parametric speech synthesis” The Centre
for Speech Technology Research, University of Edinburgh, UK
10. A. Black, P. Taylor, and R. Caley, “The Festival speech synthesis system,”
speech databases", in Proceedings of INTERSPEECH, Portland, Oregon, USA, 2012.
469-472, June 2009.
13. A. Black and K. Lenzo, “Building voices in the Festival speech synthesis system,”
15. Sangram sing Kayte, Monica Mundada “Study of Marathi Phones for Synthesis of
Marathi Speech from Text” International Journal of Emerging Research in Management
&Technology ISSN: 2278-9359 (Volume-4, Issue-10) October 2015
International Journal on Recent and Innovation Trends in Computing and Communication ISSN:
2321-8169 Volume: 3 Issue: 6 3708 – 3711
17. Sangram sing Kayte, Monica Mundada, Santosh Gaikwad, Bharti Gawali
"PERFORMANCE EVALUATION OF SPEECH SYNTHESIS TECHNIQUES FOR ENGLISH
Speech Synthesis System for Marathi Accent using FESTVOX

LANGUAGE " International Congress on Information and Communication Technology 9-10 October, 2015

19. Monica Mundada, Sangramsing Kayte “Classification of speech and its related fluency disorders Using KNN" ISSN2231-0096 Volume-4 Number-3 Sept 2014

20. Monica Mundada, Bharti Gawali, Sangramsing Kayte "Recognition and classification of speech and its related fluency disorders" International Journal of Computer Science and Information Technologies (IJCSIT)

25. http://hts.sp.nitech.ac.jp/

Index Terms

Computer Science
Pattern Recognition

Keywords

TTS, Festival, Festvox, speech syntheses.