Abstract

All reversible circuits have an intrinsic advantage over traditional irreversible circuits, because they reduce power consumption. Due to this, reversible circuits have been a source of constant excitement and great enthusiasm in the scientific community. Reversible logic is highly useful in nanotechnology, low power design and quantum computing. This paper proposes a design for a faster adder using reversible gates.

References

1. Laszlo B. Kish, Texas A&M University, Department of Electrical Engineering, College Station, TX 77843-3128, USA Received 16 July 2002; received in revised form 19 September 2002; accepted 19 September 2002, Communicated by C.R. Doering, “End of Moore’s law: thermal (noise) death of integration in micro and nano electronics.”
2. Trevor Pering, Tom Burd, and Robert Brodersen University of California Berkeley,
Implementation of a Fast and Power Efficient Carry Select Adder using Reversible Gates

Electronics Research Laboratory, “Dynamic Voltage Scaling and the: Design of a Low-Power Microprocessor System”


12. Asher Peres, “Reversible logic and quantum computers”, The American Physical Society


Implementation of a Fast and Power Efficient Carry Select Adder using Reversible Gates

24. Area, Delay and Power Comparison of Adder Topologies. R.UMA, Vidya Vijayan2 , M.
Mohanapriya2, Sharon Paul.

Index Terms

Computer Science

Circuits and Systems

Keywords

Reversible Logic, Efficient Adder designs, Carry Select Adder, Power Efficient