Abstract

This paper presents a survey of Expert Tutoring System (ETS), designed for the improvement of teaching pedagogy. It talks about the flaws and designing issues that may occur in designing the expert tutoring system, and also suggests the cognitive approach for building a robust tutoring system. It describes the ill defined domains, case based reasoning, and the system approach for the designing of a cognitive tutoring system.

References

26. Kazuhisa Kawai, Riichiro Mizoguchi, Osamu Kakusho, and Junichi Tyoda. A framework
Survey of Expert Systems and the Cognitive Approaches towards an Effective Tutoring System

49. Michael Schoelles and Henry Hamburger. Teacher-usable exercise design tools.
Springer Berlin Heidelberg, 1996.
51. P.S Steif, Fu Luoting, and L.B Kara. Computer tutors can address students learning to
solve complex engineering problems. Frontiers in Education Conference (FIE), 2014 IEEE
52. Kenneth Tait. DISCOURSE: The Design and Production of Simulation-based Learning
54. Robert D. Tennyson and Klaus Breuer. ISD EXPERT: An Automated Approach to
55. David G. Ullman and Thomas A.Dietterich. Mechanical design methodology implications
on future developments of computer-aided design and knowledge-based systems. Engineering
56. Jeroen J. G. van Merrinboer, Jaap Jan Luursema, Hans Kingma, Frans Houweling, and
Arjen P. de Vries. Fuzzy Logic Instructional Models: The Dynamic Construction of Programming
57. Vijay Vasandani and T. Govindaraj. Knowledge Structures for a Computer-Based
59. W.Feurzeig. Cognitive science, Artificial intelligence and complex training. Springer US,
1987.
60. Randall Whitaker and Olov stberg. Channeling knowledge: Expert systems as

Index Terms

Computer Science

Applied Sciences

Keywords
Expert Tutoring Systems (ETS), Poorly Defined Domains, Case Based Reasoning (CBR), Cognitive Approach