Abstract

Image denoising is an important image processing task, both as a process itself, and as a component in other processes. The main properties of a good image denoising model are that it will remove noise while preserving edges. Traditionally, linear models have been used. One common approach is to use a Gaussian filter. In spite of the great success of many denoising algorithms; they tend to smooth the fine scale image textures when removing noise, degrading the image visual quality. To address this problem we compare two methods in this paper. The Nonlocal Hierarchical Dictionary Learning using Wavelet (NHDLW) and Gradient Histogram Preservation (GHP), which is large success in denoising. Experimental result shows that the NHDLW get significantly better denoising results especially on an image denoising algorithms on higher noise levels.

References

2. P. Chatterjee and P. Milanfar, “Clustering-based denoising with locally learned
2272–2279.
4. K. Vladimir, F. Alessandro, E. Karen, and A. Jaakko, “From local kernel to nonlocal
5. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D
9. M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over
11. W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally centralized spars representation for
15. D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-Laplacian priors,” in
no. 4, pp. 683–694, Apr. 2012.

Index Terms

Computer Science Image Processing
Keywords

Image denoising, wavelets, sparse coding, multi-scale nonlocal, histogram specification, non-local, sparse representation.