Abstract

Electrocardiogram (ECG) is a signal with unique, valuable information about the functional aspects of the heart with respect to time. The automatic analysis of ECG signals is an important application since the early detection of heart diseases/abnormalities can prolong life and enhance the quality of living through appropriate treatment. The ECG is collected using a number of electrodes placed in different positions on the body. Multi-lead ECGs acquired simultaneously helps in better diagnosis of heart diseases. This paper focuses on classification of healthy and Myocardial infarction signals. The identification of acute myocardial infarction with symptoms of Ischemia is critical to delivering appropriate medical care. In this paper decision tree based classifiers are implemented for the classification of ECG signals. The signals were analyzed for 34 normal and 33 myocardial infarction patients in the database PTB from the domain Physionet.org. The classifiers, J48 and Classification and Regression Trees (CART) are compared with respect to accuracy measures. The J48 classifier performs better with the correct classification rate of 98% and 0.9 Kappa statistics.
References

3. Zhao Yong, Hong Wenhong, Xu Yonghong, Cui Jianxin, ECG Beats Classification Based on Ensemble Feature Composed of Independent Components and QRS Complex Width, IEEE International Conference on Computer Science and Software Engineering 2008, pp 868-871
16. Asie Bakhshipour, Mohammad Pooyan, Hojat Mohammadnejad, Alireza Fallahi,
Myocardial Ischemia Detection with ECG Analysis, Using Wavelet Transform and Support
Vector Machines, Proceedings of the 17th Iranian Conference of Biomedical Engineering
(ICBME2010), 3-4 November 2010
17. Farah Nur Atiqah , Francis Abdullah, Fazly Salleh Abas, Rosli Besar, ECG Classification
using Wavelet Transform and Discriminant Analysis, International Conference on Biomedical
Engineering ,27-28 February 2012
978-0-443-06826-3
19. Raphael Twerenbold, Roger Abächerli, Tobias Reichlin, Stefan Osswald, Christian
Müller Early Diagnosis of Acute Myocardial Infarction by ST-Segment Deviation Score, IEEE
reduction algorithms in EMD and wavelet domains’, Biomedical Signal Processing and
Control,vol.7 (5),Sept 2012, pp. 481-489.
21. S. Karpagachelvi, Dr.M.Arthanari, M.Sivakumar,ECG Feature Extraction Techniques - A
Survey Approach, (IJCISIS) International Journal of Computer Science and information Security,
Vol. 8, No. 1, April 2010
22. Okajima, M., Okamoto N., Yokoi M., Iwatsuka T., Ohsawa, Methodology of ECG
interpretation in the Nagoya Program, Methods in Information Medicine,29,1990,pp 341-345.
23. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE,
Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of

Index Terms

Computer Science Algorithms

Keywords

ECG, PCA, MI, J48, CART