Abstract

Cloud computing is the new innovation in the field of internet technologies. It supports heterogeneous computing and user has not any managerial loads. In this effective computation is provided in terms of services through policies regarding resource allocation, processing, load sharing, fault tolerance etc. Normally the service ranges from platform, software counted and infrastructure as pay per use basis so as user have not burdened of supporting cost. Here the number of users accessing these services and their data is large so as it suffers from several issues. Among those issues security is taken to be critical one for providing the isolation and privacy to the user. Several new approaches created from last few years along with traditional security but all of them are unable to satisfy the users and providers need. In such environment the users data is placed at third party locations and while securely accessing the computation and overhead loads are increased. This load is due to iterative encryption standards applied while frequently accessing and saving the users changes to the files. Thus some novel standard is suggested in the literature using homomorphism characteristics from which some mathematical operations are performed directly on the cipher text without decrypting the data.
By this the load of the system gets reduced. But its practical implementation is always questioned. This work proposes a novel practically feasible HEBA (Homomorphic Encryption with Behavioral Attribute) schemes for overcoming the above issues. At the analytical level of result evaluation, the suggested approach seems to be providing effective results is near future.

References


Index Terms

Computer Science Control Systems
Keywords

Cloud Computing, Security Service, Homomorphic Encryption with Behavioral Attribute (HEBA), Authentication, User Attributes, Monitoring Service;