Abstract

With the development of Image processing editing tools and software, an image is manipulated very easily. The image manipulation detection is essential for the reason that an image can be employed as legal evidence, in the field of forensics investigations, and also in numerous various other fields. The image forgery detection based on pixels aims to validate the digital image authenticity with no aforementioned information of the main image. There are several means intended for tampering a digital image, for example, copy-move or splicing, resampling a digital image (stretch, rotate, resize), removal as well as the addition of an object from your image. Copy move image forgery detection is utilized to figure out the replicated regions as well as the pasted parts, however forgery detection may possibly vary dependant on whether or not there is virtually any post-processing on the replicated part before inserting the item completely to another party. Typically, counterfeiters utilize many operations like rotation, filtering, JPEG compression, resizing as well as the addition of noise to the main image before pasting, that make this thing challenging to recognize the copy move image forgery. Hence, forgery detector needs to be robust to any or all manipulations and also the latest editing software tools. In the
literature part, various researchers portrayed the working scenario of copy-move image forgery utilizing the similarity measures as well as the relationship among the original parts of the image and their pasted parts in the similar image. This research paper illustrates recent issues in the techniques of forgery detection and also all their comparative analysis.

References


34. Luo, W., Huang, J., and Qiu, G. “Robust detection of region-duplication forgery in digital
35. Bravo-Solorio, S., and Nandi, A. K. “Automated detection and localisation of duplicated
regions affected by reflection, rotation and scaling in image forensics”, Signal Processing, 2011,
Vol. 91, No. 8, pp. 1759-1770.
forgery using model with circle block”, International Conference on Multimedia Information
37. Sridevi, M., Mala, C., and Sandeep, S. “Copy–move image forgery detection”,
digital images”, 11th IEEE Singapore International Conference on Communication Systems,
2008.
40. Bayram, S., Sencar, H. T., and Memon, N. “An efficient and robust method for detecting
copy-move forgery”, IEEE International Conference on Acoustics, Speech and Signal
Processing, 2009.
41. Li, L., Li, S., and Wang, J. “Copy-move forgery detection based on PHT”, World
42. Ghorbani, M., Firouzmand, M., and Faraahi, A. “DWT-DCT (QCD) based copy-move
image forgery detection”, 18th International Conference on Systems, Signals and Image
Processing, 2011.
43. Li, L., Li, S., Zhu, H., Chu, S.-C., Roddick, J. F., and Pan, J.-S. “An Efficient Scheme for
Detecting Copymove Forged Images by Local Binary Patterns”, Journal of Information Hiding
44. Qiao, M., Sung, A., Liu, Q., and Ribeiro, B. “A novel approach for detection of
copy-move forgery”, Fifth International Conference on Advanced Engineering Computing and
Applications in Sciences, 2011.
45. Huang, H., Guo, W., and Zhang, Y. “Detection of copy-move forgery in digital images
using SIFT algorithm”, Pacific-Asia Workshop on Computational Intelligence and Industrial
Application, 2008.
46. Bo, X., Junwen, W., Guangjie, L., and Yuewei, D. “Image copy-move forgery detection
based on SURF”, International Conference on Multimedia Information Networking and Security,
2010.
47. Zheng, J., Haoa, W., and Zhub, W. “Detection of Copy-move Forgery Based on
Keypoints’ Positional Relationship”, Journal of Information and Computational Science, 2012,
Vol. 1, No. 3, pp. 53-60.

Index Terms
Computer Science

Image Processing
Keywords

Image Forgery, Copy-Move Image forgery, Image Forgery Detection, Tampering, Digital Forensics, Duplication forgery Detection